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Abstract. The hyperspherical close-coupling method is applied to calculate both the elastic
and pesitronium formation cross sections for positron collisions with atomic hydrogen at low
energies. By treating the hyperradius as a slow variable, the Schridinger equation in the body
frame at each fixed hyperradius is solved using the higher-order finiteelement method and the
resulting hyperradial equations are solved using the diabatic-by-sector method. The coupled
hyperradial equations are integrated to a large hyperradius where the wavefunctions are matched
to the known asymptotic solutions to extract the scattering matrix. Both the elastic and the
positronium formation cross sections are calculated at energies below the Hin = 2} excitation
threshold for J = 0, 1, 2 and 3, It is shown that the present hyperspherical close coupling
method gives results comparable to those obtained by elaborate variatiopal methods.

1. Introduction

In recent years the development of intense positron sources and the improvement in
experimental techniques have made it possible to measure directly the positronium formation
eross sections in positron collisions with atoms (DeVries et al 1993, Kwan et al 1993 and
references in Humberston 1986, Humberston and Armour 1987). While measurements for
the scattering of positrons by atomic hydrogen are not available except at higher energies
(Sperber er af 1992, Zhou et al 1993b, Stein er al 1993), this subject has been studied
extensively by many theoretical methods over the years. On the one hand, it is interesting
to examine the difference between the scattering of an atomic hydrogen by electrons and by
positrons. For electron-tiydrogen collisions, the indistinguishability between the incident
and target electrons imposes symmetry boundary conditions which are not required for
positron-hydrogen collisions. On the other hand, collisions between positrons and atomic
hydrogen can result in the formation of positronium where the electron and positron combine
to form a bound composite system. Theoretically the description of rearrangement collisions
is much more difficuit, and thus calculations of positronium formation cross section have
been of much interest.

The positronium formation cross sections have been studied over the years using many
theoretical methods. Most of the calculations are concentrated in the so-called Ore gap
region, i.e., the energy region between the formation of the positronium ground state and
the first excited state of atomic hydrogen (total energy between —0.25 au and —0.125 au),
Besides the simple perturbative theories which are not expected to be valid at the low
energies considered here, there have been three major theoretical approaches. The first
and often considered to be the most accurate is based on the Kohn variational principle.
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Such calculations have been carried out for J =0, 1 and 2 (Brown and Humberston 19835,
Humberston 1986). These calculations are rather elaborate and the variational parameters
have to be determined at each energy and for each partial wave. The second approach
is based on the close coupling method where the wavefunction of the collision system is
expanded in terms of bound states (and sometimes pseudostates also) of atomic hydrogen
and of the positronium (Basu ef o/ 1989, Hewitt et al 1990, Liu and Gien 1992, Mitroy
1993). In the close coupling calculations the importance of pseudostates is difficult to
evaluate.

An alternative method for treating rearrangement collisions has been formulated using
hyperspherical coordinates since the 1960s in connection with chemical reactive scattering
(Smith 1960} and in collisions involving nucleons (Delves 1959, 1962). In recent years
great progress has been made, in particular, in the calculation of atom—diatom reactive
scattering cross sections. There are several quantum chemistry groups where the reactive
scatterings such as H 4 D; — HD + D or F+ H; —» FH 4 H were studied (Launay and
Le Dourneuf 1989, Launay 1990). Despite the great success of such studies, the utilities
of the hyperspherical approach have not been critically tested. First, in chemical reactive
scatterings the interatomic potentials can be determined only approximately, either by ab
initio calculations or by semi-empirical fitting of spectroscopic data, which thus limit the
accuracy of the results obtained. Second, the number of rotational and vibrational levels of
a molecule is quite large within a narrow energy range such that calculations always have
to be carried out by including a large number of rovibrational excited states. Analysis and
understanding of results from such large scale calculations are more difficult.

In atomic physics, the hyperspherical coordinates have been used in the last two decades
in the classification of doubly excited states of atoms (Lin 1984, 1986). Recently, it has been
further extended to general Coulomb three-body systems where the masses of the particles
are arbitrary (Lin and Liu 1988, Chen and Lin 1990, Liu er al 1991, Zhou et al 1993¢),
These studies provided the qualitative understanding of the Coulombic systems and the
variation of the properties of these systems with the masses was examined. In the meanwhile,
numerical improvement has been made in the last few years such that the hyperspherical
close coupling (HSCC) method has now been applied routinely to atomic systems, including
accurate calculations of resonance energies, resonance widths and photoionization spectra
{Tang et al 1992a, Zhou et al 1993a). It has been shown that results from the HSCC
method are as accurate as those obtained by variational methods and the computational
efforts required are much less than other methods. Thus the HSCC method has been used
to calculate photoabsorption spectra for higher doubly excited states where many channels
are open (Tang et al 1992b).

The present paper describes the extension of the HSCC method to arbitrary three-body
systems. In particular, we will concentrate on the calculation of elastic and the positronium
formation cross sections in the Ore gap region. However, the method is quite general, and
it is being extended to collisions at higher energies and to other collision systems.

The HSCC method has been applied previously to positron—atomic hydrogen scattering
by Archer et al (1990) where they employed 40 channels in the inner region and the
wavefunctions are matched at R = 120. Their hyperangles are defined differently from
ours and they solved the two-dimensional partial differential equations using the finite-
element method where the wavefunction in each element is expanded in terms of a product
of second-order polynomials. We used fifth-order pelynomials to expand the wavefunction
in each element (Zhou et al 1993c) and can achieve higher numerical accuracy for the
potential curves, Furthermore, Archer et ¢l applied the method only to the case where the
total orbital angular momentum is zero. Very recently another calculation which is very
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similar to ours has been carried out by Igarashi and Toshima (1994), They used the same
hyperspherical coordinates, but the wavefunctions were calculated in the laboratory-fixed
frame and the potential curves are calculated using Slater orbitals of the positronium and
the atomic hydrogen. We differ from thern mostly in the numerical details.

In this paper we describe in detail the application of the HSCC method to the collisions
of a three-body system. The relevant equations and the numerical approaches are described
in section 2. The calculated elastic scattering and the positronium formation cross sections
for positron—atomic hydrogen collision are given in section 3. A summary and discussion of
future developments are given in section 4. Atormic units are used unless otherwise noted.
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Figure 1. Definition of the three sets of Jacobi coordinates for the et + H collision system.

2. The hyperspherical close coupling approach

2.1. Summary of the hyperspherical coordinates

For the positron-hydrogen atom system, three sets, (&, 8, ), of internal Jacobi coordinates
can be defined, see figure 1.
For each set of Jacobi coordinates, one can define two mass-weighted vectors

[ (12
- - 1
£ = m pi & m o2 (1)

where py and p; are the reduced masses associated with each vector py and p;. The
parameter u is an arbitrary scaling factor which is set to be p = (m, +m.)/mpm. ~ 1. For
each set of Jacobi coordinates, a hyperspherical radius R and a hyperangle ¢ are defined as

R=g+&8 tnp=5/% )
where R? is propotional to the moment of inertia of the system, and is invariant with respect
to the three sets of Jacobi coordinates.

After introducing the reduced wavefunction
Y(R, ¢, ) = ¢y R singcos¢ (3)

(1 is the whole wavefunction), the Schddinger equation is of the form

92 ;
(--(,)l—RE + Ham zuE) Y(R,$,9) =0 @
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where £ denotes collectively the four orientation angles of vectors p; and p;. The adiabatic
Hamiltonian is

A%+ 2uRC(p, 6)

Ho(R; ¢, ) = =3 (5)
with
32 2 2 1
2_f{_ 7 1 2 .
AT= ( 3¢? + cos2 ¢ + sin2¢) 4 ©

where I, and [ are the usual orbital angular mometum operators, and

o B v
_ e 2z | B ZaZs b 23z,
C@.6) = L cosg? + i ocos P + [ cosgr 0

is the effective charge among the three particles. In (7), Z; is the charge of particle {, and
the hyperangle in each set of Jacobi coordinates has been explicitly given. The angles ¢.,0
on the left can be angles in any one of the three Jacobi sets.

Figure 2. Body-frame axes. The three particles lie on the x’—z’ plane with the z’' axis along the
proton-positron line and the electron above the x-y" plane.

2.2, Expansion of wavefunctions in the body frame

The coordinate system in the body frame is defined as in figure 2 where the quantization
axis is along the line joining the proton and the positron and the three particles lie on the
x'z’ plane. After some elaborate algebra, the A? operator takes the form

A=Th+T+%—} ®)
where
8 1 d ( .8 )
-0 % (gpe") .. : 9
° 3¢*  sin®¢pcos? psing 6 T @)
72 2 _ J2
- 2 2 0

sin® g cos? psin®@  cost¢

~ a AA
T, = (2izy, =+ 2cot91xflzr) /cos’ ¢ (1)



Ps formation cross sections in et -H scattering 5069

and the angular momentum operators with respect to the body-frame axes are

- ad

fo = —i (sincusi —c‘.)ws—+cntcuzcoscv3i (12)
Owr  sinan dan den

- a3 i a 8

Iy = —i (COSQ}g“— T LA cot ws sin ws— (13)
dwn  sinan day dan

- A

lz; = -—-Ia (14)

where wy, wa, w3 are the three Euler angles of the body-frame axes with respect to the
space-fixed frame (Landau and Lifshitz 1977).

From the definition of the operators, Tp and T are diagonal with raspect to the magnetic
components / along the z’ axis of the body-frame and T operator couples only states with
adjacent I components. Note that 75 is similar to the rotational coupling in atomic collisions.

The wavefunction which describes the overall rotation of the three-body system can
be separated out. Define the normalized and symmetrized D-functions associated with our
choice of the body-frame (Bhatia and Temkin 1964)

V2T +1
4 [1 + (V37— 1)5,0]

Dy, (1, 02, 3) = [Diy, + (-1)* PD!,,, ] (15)

which are eigenfunctions of operators J2,J,,/2 and parity. Here P is the parity, J is the
total angular momentum, / is the absolute value of the projection of J along the body
frame’s 2z’ axis and M; is the projection along the space-fixed z axis. If (1P =1,17
runs from 0 to J; if (—1)' P = =1, I runs from 1 to J.

2.3. The diabatic-by-sector approach

In the so-called diabatic-by-sector approach, the reduced wavefunction W is expanded in
terms of D and the diabatic-by-sector bases ®,r(R;; 8, ¢):

V(R 6,82) =" Fu(R)®ur(Ra; 8, $)D7,y (01, w2, ). (16)
g

»

In contrast to the standard adiabatic approach or the Born—-Oppenheimer approximation,
the diabatic-by-sector bases are defined only at discretized values of R. In this approach
the hyperradius is divided into many small sectors. Within each sector, the base function,
D, 1(Ry; 8, @), is fixed where R, is often chosen to be at the midpoint of each sector. Since
the base functions are fixed within each sector, (8/3R)®P,;(R,; 8, ¢} = 0, and thus the
basis functions are diabatic. The diabatic functions ®,; are chosen to satisfy

To + (D}, 1T11D},) + 2ul
R? R,

a

:"I’M(Ra;éh $) = 2pUu 1 (R} Pui(Ra; 6, @) (17)

with 0 6 < 7 and 0 < ¢ < Lm. Here

? J(I+1)—217
sin® ¢ cos? ¢ sin? @ cos® ¢ .

(18)

{Diy,\TiI DYy} =
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Within the sector, the hyperradial functions F,; then satisfy the coupled differential
equations

a2 1
(_5755 TR Z”E) Fur(R) + Z: Virar (RYEup(R) = 0 (19)
where
-, To+Ti+T  2uC i
Vit (R) = (®s (Rai 8, YD1y, | 22 4 o2 01 (Rai 8, 8) Dy @0

R? R

and E is the total energy of the system in the centre-of-mass frame.

w2

&

Figure 3. Contour plot of the potential surface of the e* +H system on the (8%, ¢%) plane. Two
potential valleys occur at (8%, ¢%) = (0°, 45°) and (1807, 0.0311°), respectively, The latter is
not clearly visible on the plot since it is very close to the right lower comer of the frame,

2.4, Numerical calculations of the diabatic basis functions

One of the major numerical difficulties in the present approach is the accurate solution of
the partial differential equation (17). To ensure that the excitation of atomic hydrogen and
the positronium formation channels are treated on equal footing, we solve equation (17) in
the o-set coordinates, In this coordinate system, the effective charge C on the (@, ¢) plane
exhibits two singularities, as shown in figure 3. The first singularity can be easily seen to
occur at & = 0°, ¢ = 45°, and the other singularity oceurs at 8 = 180°, ¢ = 0.0311° which
is very close to the lower right-hand comer and is not clearly seen in the coatour plot in
figure 3.

We solve the two-dimensional partial differential equation (17) using the finite-element
method (FEM) (Bathe and Wilson, 1976). The (8, ¢) plane is divided into 240 rectangular
elements, 10 in &, and 24 in ¢. At large hyperradius, the wavefunctions are localized near
the singular points of one or the other potential valley of figure 3. To account for these
localizations, we choose the elements in such a way that more elements are used near the
singular points. In each element, ®,; is expanded in 36 local bases (see, for example,
Shertzer and Levin 1991, Zhou et al 1993a, b, ¢), each of which is a product of two fifth-
order polynomials of 8 and ¢, respectively. The expansion coefficients are the values of



Ps formation cross sections in e*-H scattering 5071

Dy, 30, /00, 9P, /30 and 3%®,,; /8438 at the nine nodes of the element which are the
four points at the corners, four at the midpoint of each side and another at the centre of
the rectangle. With this choice the size of the matrix is 4032. Since it is a sparse matrix,
a special ‘skyline’ storage mode is used, and the subspace iteration method is utilized to
calculate the lowest few (< 20) eigenvalues and the corresponding eigenfunctions.

The numerical accuracy depends on the number of elements used, and the eigenvalues
are expected to be less accurate at large R where the wavefunctions are more localized near
the singular points. However, even with the chosen 240 elements, we can achieve better than
four-digit accuracy for the [owest eigenvalues which are expected to be the least accurate at
large R because these wavefunctions are more localized. For instance, at R, = 29.93, the
calculated lowest Uy for J = 0 is —1.0005423, while the eigenvalue obtained from the
asymptotic expansion formula (Cavagnero et al 1990) gives —1.000558 + O(1/R%). At this
R, the higher eigenvalues are expected to be more accurate since they are less localized.
Similarly the eigenvalues at smaller R are expected to be more accurate. The accuracy of
the eigenvalues obtained in this work is much improved from the calculations of Archer
et al (1990). The latter group used second-order polynomials to expand the wavefunctions
in each element and they can achieve only two-digit accuracy in eigenvalues at large R.
In the present work the FEM calculations were carried out using the resources of Cornell
Supercomputer Center.

2.5. Evaluation of coupling matrix elements V1 ,p(R)

From the definition, equations (9} and (10}, the matrix element of Ty + 7} between channels
with different 7 is zero, while the matrix element of T; is non-zero only for I' = [ £ 1.
Furthermore
L+ 0 2,u.C
Rz I¢DI"(RG!9 ¢)DI MJ
To-l- T; R? 2,uC

R R

(Ou1(Ra; 8, 8Dy | ———

( M.I(Rme ¢)D1M,| |(Dv1'(Rm6 ¢)D1' )

CR2 2;.1,
R, R2

R2U1u(Ro)3p + (R = Ro)Cuui ] 811 21

=(®pui(Ra; 6, 8) D}y, 126Uy ~ 1@y (R 8, 6) DYy,

=2
and

(@1 (Ro; 8, 8) D]y, | Ta| Boy (Ra; 6, $) D}y, )
={Ppus(Rg; 0, D) Brr1|Pur+1(Ras 8, $)}8r 141
+ AP L (Rai 0, @) rr—11Pur-1(Ra; 6, @))8rr11 (22)

with
C,u.vl = <¢_ul (Ra)llcl‘pvl (Ra”

J
hirs) = "”*; (:i: +(Ii1)c0t6)

Vi =-[1+ /2~ 1)3,0] [(J 41+ DI = D2
Vi == [14 2= D80 |17 = 14+ D@ + D12, (23
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Thus V,;.p (R) is given explicitly by

2 1
Varvr(R) = R_’j [R2U1u8u + (R = Ra)Cui] Sty [(®@pu1(R)IB 1151 Purs1 (RYSr 141
HPur (R k71| Posm1 (Ra))8rri1]. (24)

These matrix elements are identical to those derived by Kadomstsev and Vinitsky (1987)
except that our ¢ is half of theirs.

2.6. Matching of inner region solutions and the asymptotic solutions

In this work we have divided the hyperradius into 267 sectors between R = 0.03 and
R = 29.93. Starting with the smallest R with appropriate initial conditions, the coupled
hyperradial equations {19) are integrated within the first sector. To propagate from one sector
to the next, we need to calculate the transformation matrix (®,;(R,)|®,;(Rp)}, where R,
and R;, are chosen at the midpoint of each sector. The sector size is determined such that this
transformation matrix remains unitary to about one part per 10*. This procedure is repeated
until a large value of Ry is reached where the wavefunction is matched to the wavefunction
in the asymptotic region. In the present calculation the Ry is set at 29.93. At this boundary,
the integrated solution from the inner region Z‘M Fyu1 (Ro)®yus(Ro; 6, ) D]y, (@1, w3, w3)
is matched to the wavefunction in the asymptotic region where the three-body system is
either dissociated to a hydm%en atom and a positron or a positronium and a proton. The
asymptotic wavefunction $ 4 of the dissociated system can be represented by

ZN? @1 (oD Visiz am, (€1, O [ £ (080 — 81 (D) Kia]
P p1P7

v P (o1, p2) = (25)

where ¢;(pf) are the bound state hydrogenic functions if ¢ denotes the y-set coordinates
which are suitable for describing the excitation of atomic hydrogen, or bound states of the
positronium if © refers to B-set coordinates for describing positronium formation channels.
In the equatlon, [ and g are velocity-normalized regular and irregular spherical Bessel
functions 7— Jjiy and 7,?”1: respectively, with o™ as the relative velocity of the particle
pair and the far-away particle of the r armrangement, K, is the element of the K matrix,
and the ) are the coupled angular momentum functions. The matching of the two solutions
at Ro becomes

1 .
mz HAWO Ry, 6,0 = P (1, 1) s, @6)

with H} being the expansion coefficients.

The asymptotic wavefunction ¥ 1 Dot p2) as given in equation (25) is expressed in the
laboratory-fixed frame. To solve equation (26), one needs to expand it by referring to the
body frame. Note that

ae a 1672 Dy (@1, w3, w3) £ ribody) A 7(body)
JJ!]‘I‘-;JMJ(Q{’ Q;) = 2J + 1 Z 1 +J(\/-__ 1)3’0 y’ﬂ{“’I(Qi ¢ 4 Q; Y )' (27)
Here, = (8. 6f ) Q = (6], ¢]) are the orientation angles of vectors p; and p, for

the T arrangement Superscript (body) indicates that these angles are measured in the body
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frame. From the body-frame geometry defined in figure 2, ¢,‘3(b°d") =0, qb:'(wd” = m,
2P = 5 p7®M — 7 and equation (27) can be rewritten as:
s A 1672 DIM (01, w2, w3)
Vipiz i, (82, §23) = L (FmlZ] —m)J 1)
s S, 5 2J+IZ T+ (/3 2
X Yigm (O] 0V, 280 Wi 1-m (67, 7). (28)
For simplicity, we define
1672 1
Sz 9T, ¢%) =
T CAN A 1{214_11_{_(«/—” Do
x Z EmiET — ml T Y@ Y, 78:,) Y1 - (6500, ) (29)

here, the right-hand side is dependent on 6, ¢ implicitly through 8'0’“]’) and St(b"dﬂ
Now that the asymptotic solutions are also expressed in the body-frame the matching
condition (26} becomes

Tt Tty HEFSP (Ro)®ui(Ro3 8, ) By, (01, wp, @2)
Rg/ 2 sin ¢cosg

N
=Y 6D [Ai(eDd — 21(0])Kn]

i=l

x 2 D}y, (@1, @2, 03)Suzi3sm,p (6%, 6°)

(30)
RZcos ¢* singru?/uipi

Note that the &, ¢ angles on the left-hand side are given in a-set coordinates, and the
same angles on the right-hand sides are either in the 8-set or y-set coordinates. Since the
functions &, ; D;—'M_, are orthogonal and normalized, we obtain the following relation,

E AEO(Re) = R f (sin  ¢05 $)®,1(Ro; 6, ) Dpy, ¥ (1, £2) | reiy A2

N
= Ry (J,.’z: -3 N;;Ka) (31)
i=1

where
I = sin ¢ cos § Ro; 6, : Stz s p (8%, ¢°) sin 6d6d
b= e Ot (R 8. VA G A Sty 8, ) sin 06804
(32)
and
;o sin¢ cos ¢ .
Nur _f51n¢r cos 3/t us ®7(Ro; 0, §)oi(p))8i(03)Strziz a3, (67, ¢7) 5in 8dBd.

(33
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Equation (31) can also be expressed in matrix form
FH = RY/*[J — NK]. (34)

Similarly, by requiring that the derivative of the wavefunction with respect to R be
continuous at Ry, we obtain an equation similar to (34),

FH = R/ - NK] (35)

where

P, 1(Ro; O,
infv= sin ¢ cos ¢P 1 (Ro; 6, ¢) (\/:COSW%(PDJ’A(P;)

sin ¢* cos ¢F

T ' Jy
+/ % sin ¢rm(P1’)f§(pz')) Snzram, p(8°, &7 ) sin@dbdg + 5% (36)
R=Ry

and

_ [ singcosg®,;(Ro; 8, §) . . .
Nm B f sin ¢ cos @7 (\/:cos¢ {(o7)8(p3)

¥ N
+ % sin¢* (Pf)g}'(P{)) Snyzam, (87, ¢°) sin6dode + 5 . (37)
‘ R=R,

After defining the log-derivative matrix
Y = FF’ (38)
and from equations (34) and (35), we finally obtain the X matrix

K =[YN - N [YJ -J]. (39)

From the K matrix, the partial cross section is

(40)

'(1]} - 4.77(2.] + 1) I

1——-1K

with & as the positron incident momentum.

3. Results and discussion

3.1. The s-wave

The s-wave elastic and positronium formation cross sections within the Ore gap are shown
in figure 4. The results from the present calculation are shown as open triangles connected
by a full line. We compare our results with the variational calculations by Brown and
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Figure 4. The s-wave elastic and positronium formation cross sections with respect to the
incident wavenumber of positron in the Ore Gap. Full line and triangles, present resuits; open
circles, Brown and Humberston (1985); diamonds, Mitroy (1993); crosses, Igarashi and Toshima
(1994); asterisks, Archer ef al (1990); full square, Winick and Reinhardt (1978).

Humberston (1985) (shown as open circles) which are considered to be the most accurate in
this energy region. In the figure we also show two other calculations using hyperspherical
coordinates: one from the earlier work of Archer et al (1990) (as asterisks), and the other
from the more recent one by Igarashi and Toshima (1994) (as crosses). For results from the
close-coupling method, we only show the most recent one by Mitroy (1993) (as diamonds).
We also show the results by Winick and Reinhart (1978) where they used the so-called
moment T-matrix method to calculate the elastic cross section and the total cross section.
In the Ore gap region, the difference of the two is the positronium formation cross section.
Their results for the elastic cross section are shown as full squares. Since the positronium
formation cross section is small for the s-wave scattering, their results are not as accurate
and are not shown.

It appears that our results agree best with the variational calculations. The differences
among the hyperspherical approaches should be atributed mostly to the numerical accuracy
since the methods are basically identical, The work of Archer et al used a different set
of hyperspherical angles and a lower order FEM method was used in solving the adiabatic
equation (17) at each fixed hyperradivs. The work of Igarashi and Toshima differs from
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Figure 5. As in figure 4, but for the p-wave.

ours in that they used wavefunctions in the laboratory-fixed frame and the wavefunctions
and potential curves at a given hyperradius were obtained by diagonalizing the Hamiltonian
using Slater orbitals constructed from the £ and y (see figure 1) arrangements. The number
of channels used in the calculation in the inner region is also different. In our calculation, we
include 20 channels, and the matching to the asymptotic region is carried out at R = 29.93.
We have checked the calculations by varying the matching radius and the number of channels
and the results are stable to better than 2-5%. Mitroy (1993) used the close-coupling method.
As noted by Igarashi and Toshima, the non-local potential between the two arrangements
makes it difficult to include many bases.

It is appropriate to make comments on the matching radius chosen in our calculation.
We believe that this contributes to the discrepancies among the HSCC calculations. We have
varied the matching radius around R = 29.93 and found stable results. Qur matching radius
is far less than the R = 120 used by Archer et @l and the R = 400-500 used by Igarashi
and Toshima (1994). We argue that it is not appropriate to do the matching at such large
distances unless the number of channels in the inner region is increased correspondingly.
It is desirable to view the hyperspherical close coupling method as a variation of the R-
matrix method. The number of channels used in the inner region is supposed to represent
the ‘exact’ solution in the inner region which is often done in the R-matrix method by
expanding into a large basis set. If the matching radius is increased, the number of basis



Ps formation cross sections in et -H scaitering 5077

L=1 Potentials

0.5 T T | E—
00
&
= F<H(2)
DE | J ]
05 Ps(1) .
rH(L
10 L [ N N B
0 5 0 15 2 3% 0 5 10 15 20 25 30
R(a.u.)

Figure 6. Potential curves for the p-wave with ten channels for / = 0 and seven channels
for I = 1. The dissociation states at large R are also indicated, The third and fourth lowest
channels for I = 1 converge to the n = 3 excited states of H. The highest three channels for
I =1 converge to the n = 4 excited states of H atom. MNote that the higher potential curves
have not reached the asymptotic limits at R = 30.

functions has to be increased. Similarly, if the matching radius is increased in the HSCC
method, the number of channel functions should be increased as well. Assuming that we
have neglected the polarization potential from R = 29.93 to infinity, we have estimated that
the error in the elastic phaseshift is of the order of a fraction of 1%.

We do not show results from other earlier calculations in figure 4. Results from other
close coupling calculations were summarized by Mitroy (1993} and the earlier results have
been discussed in the review by Humberston (1986).

3.2. The p-wave

The p-wave elastic and positronium formation cross sections are shown in figure 5. We
compare the resuits with the variational calculations by Brown and Humberston (1985),
the close-coupling calculation by Mitroy (1993), the hyperspherical resuits of Igarashi and
Toshima (1994) and those from Winick and Reinhardt (1978). For the elastic cross section,
our results agree very well with those of Brown and Humberston. For the positronium
formation cross, sections, our results are in good agreement with those of Brown and
Humberston. Resulits from the other three calculations are also all in reasonable agreement,
especially at low energies.

In this calculaticn we included twenty channels. The lowest 17 potential curves are
shown in fipure 6, ten for / = 0 and the other seven for /] = 1. Recall that I is the
magnitude of the projection of the total angular momentum along the body-frame z’ axis.
For I = 0, the two lowest curves converge to the ground state of atomic hydrogen and
of the positronium, respectively. The two pairs of higher curves converge to the n = 2
excited states of hydrogen and of the positronism, respectively. For J = 1, the two lowest
curves converge to the n = 2 excited states, These curves are similar to molecular potential
curves where R is the internuclear distance, and I = O curves correspond to the o curves
and ] = 1 to the w curves. The potential curves shown above are not adiabatic curves
since the coupling between the different I components is not included. We have found
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Figure 7. As in figure 4, but for the d-wave.

that the inclusion of these couplings quite important. In a test calculation, we demonstrated
that failure to include the rotational coupling results in much smaller positronium formation
cross sections.

3.3, The d-wave

The d-wave elastic and positronium formation cross sections are shown in figure 7. For the
elastic cross section, our results agree very well with the results of Brown and Humberston
(1985). The resuits from Igarashi and Toshima (1994) are slightly lower and those of Mitroy
(1993} are slightly higher, and the only poiat from Winick and Reinhardt (1978) is right on
our curve. For the positron formation cross section, we agree again very well with those
from Brown and Humberston (1985), and those by Igarashi and Toshima and by Mitroy are
slightly higher.

In our calculation, we include 14 channels, six for I =0, four for [ = 1, and four for
I=2 .-

3.4. The f-wave

The f-wave results for elastic and positronium formation cross sections are shown in figure 8.
There are no variational results to compare with except for the result from Winick and
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Figure 8. As in figure 4, but for the f-wave.

Reinhardt which agrees with ours. For elastic cross sections, the results of Igarashi and
Toshima are about 209 smaller than ours, and those by Mitroy are about 20% higher than
ours at higher energies. For positron formation cross sections, the results by Igarashi and
Toshima and by Mitroy agree with each other but they are higher than our results by about
20% at higher ensrgies.

The larger discrepancies for the f-wave may be an indication of the convergence of the
calculation. We agree with Winick and Reinhard at £ = 0.8, Since their results at this
energy for J = 1 and 2 are essentially identical to the variational results of Brown and
Humberston, we may be able to feel confident of the values we have calculated for the
f-wave. Note that the computing time increases quickly for the higher partial wave. We
used 18 channels for the f-wave calculation, six for I = 0 and four each for 7 =1, 2 and 3.

We have not extended the calculations to higher partial waves. Such calculations can be
easily done, but it would take more computer time. To obtain total positronium formation
cross sections one can use the results from Winick and Reinhardt or from Igarashi and
Toshima for the higher partial waves. Or when such a need arises, the present method can
be extended to these higher partial waves,
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4. Conclusion

We have applied the hyperspherical close coupling method to obtain elastic and positronium
formation cross sections in positron-atomic hydrogen collisions in the Ore gap energy
region. We have performed calculations for J =0, 1, 2 and 3, and showed that the results
obtained are of comparable accuracy to those obtained by the variational method. In the
variational calculations, parameters of the order of hundreds are used and the parameters
have to be varied for each J. In contrast, the hyperspherical close coupling method is a
direct solution of the scattering problems.

Our results show that the hyperspherical close coupling method can be used to treat
direct and rearrangement collisions involving three charged particles. Despite that there
are no experimental data in existence for the present positron—atomic hydrogen collision
system, the elaborate variational calculations for this system provide accurate data which
allow us to test the present general method. The good agreement of the present results with
these variational calculations illustrates that the hyperspherical close coupling method not
only can be applied to atomic systems such as H™ and He, but now has been extended to
rearrangement collisions. One important ingredient in carrying out the hyperspherical close-
coupling calculation is that the potential curves and the coupling terms should be calculated
accurately. We have used the higher-order finite-element method to obtain accurate potential
curves and coupling terms.

The present method is very general. We are extending the calculations to include more
channels so that excitation to the n = 2 states of atomic hydrogen and positronium formation
to the n = 2 excited states can be obtained. The present method is also written for general
three-body systems where the masses and charges in the system can be varied simply as
input parameters, and the potentials between the particles can be modified to any local
potentials. Cumrently we are extending this approach to treat these problems.
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