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Abstract. Doubly excited states of two-electron atoms and ions are calculated using the
configuration interaction method and the resulting wavefunctions are analysed in the body
frame of the atom. We computed the percentage of the projection ( T) of the total orbital
angular momentum L along the interelectronic axis for the 373/ and 3/4/ doubly excited
states. It is shown that along each rotor series, the projection is dominated by a single T
component for small-L states and that these states are well described by the molecular
model. For the high-L states along the rotor series, admixture of different T components
is large and these states display properties characteristic of a shell model. The relation
between the purity of T projection and the T doubling is also discussed.

1. Introduction

The existence of molecule-like normal modes of a pair of electrons in doubly excited
states of atoms has been established in the last two decades from a number of different
theoretical viewpoints (Herrick 1983, Berry 1989, Lin 1986 and references therein).
Typical ‘molecular behaviour’ such as the rotor structure and the A-doubling have
been observed in the calculated energy levels of doubly excited states (Kellman and
Herrick 1980, Lin 1984). Further evidence of the ‘molecular behaviour’ has been
provided by displaying the wavefunctions (or equivalently the electronic densities) in
the conventional independent particle coordinates (Ezra and Berry 1983) or in hyper-
spherical coordinates (Lin 1982, 1984). Two molecular approaches have been intro-
duced to study such doubly excited states of atoms. One is based on treating the
two-electron atom as a linear ABA triatomic molecule (see Berry 1989 and references
therein} where A represents the electron and B the nucleus. The other is to treat the
doubly excited states of atoms like the H; molecule where the role of the electron and
the heavy particle is reversed (Feagin and Briggs 1987, 1988, Rost and Briggs 1988).
It has been shown that the energy levels, the radiative and Auger decay rates of doubly
excited states can be interpreted qualitatively using either molecular model (Atsumi
et al 1991, Chen and Lin 1989, Gou et al 1991, Hunter and Berry 1987, Vollweiter et
al 1991).

In the conventional approach, doubly excited states of atoms can be calculated
using the configuration interaction (c1) method. For these states the mixing of different
configurations js quite large such that the designation based on the independent particle
model is inadequate. For intrashell doubly excited states, it has been shown that the
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wavefunctions can be approximated by the eigenfunctions which diagonalize the
operators B*=(b,—b,)" and (L B)? (Wulfman 1973, Herrick and Sinanoglu 1975),
see equations (1) and (2) below. These eigenfunctions, labelled by the new K and T
quantum numbers, are called doubly excited states basis (pEsB) functions. The K and
T, which are exact quantum numbers of the pese functions, can then serve as the
approximate quantum numbers of doubly excited states, replacing the /; and I, quantum

numbers used in the independent electron model.

The K and T quantum numbers were adopted and extended later by Lin (1983,

1984) where each doubly excited state is designated by (K, T)~ in addition to the
usual L, § and 7 quantum numbers. This notation preserves the approximate quantum
numbers used in the independent electron model, such as n and N, which are the
principal guantum numbers of the outer and the inner electrons, respectively. The
superscript A, which is not an independent quantum number, was introduced to
emphasize the nature of the radial motion of the two electrons with respect to the
nucleus, Further details about this classification scheme can be found in the review
by Lin (1986).

The relation between the different classification schemes has been discussed in the
literature (Feagin and Briggs 1988, Chen and Lin 1990). By treating each set of quantum
numbers as approximate, there is 3 one-to-one correspondence between the (K, T)
quantum numbers and those used in the molecular approaches. On the other hand, it
is important to assess the deviation and the limitation of the molecular description.
One of the major features of the molecular description is that the projection of the
total orbital angular momentum along one of the principal axes in the body frame is
a good quantum number. Thus, a similar projection can be used to measure the
molecular character of each doubly excited state of atoms.

The group-theoretical work of Herrick and co-workers has shown that the quantum
number T in the pese functions can be interpreted approximately as the projection
of the total L along the interelectronic axis. Recall that T is the eigenvalue of (L - B)?,
According to O(4), the expectation value of the Lenz vector b is proportional to the
expectation value of r,

.\

3n
(r>=§(b) (1)

where n is the principal guantum number. This relation allows one to write (Watanabe
and Lin 1986)

B2 [é ,]2+(éﬂé) ,2] (2)
iLn

non

where Z, and Z, are the effective charges of the outer and the inner electrons,
respectively. In the limit of intrashell states where ny=n,=n and Z,=2Z,=Z, B is
proportional to ry, and thus T is the projection of the orbital angular momentum along
the interelectronic axis. In the limit that r, » r,, B is again proportional to ry, if one
neglects terms of order ny/ #n,. Thus the T quantum number can be interpreted as the
projection of L along the interelectronic axis. In this connection, T is identical to the
A quantum number of a diatomic molecule. For a given total orbital angular momentum
L of an atom, T ranges from 0, 1,2, ..., L. Since T is only an approximate quantum
number for each doubly excited state, in this article we adopt the definition that the
*molecular character’ of each state is measured by the purity of the T-projection of
that state along the interelectronic axis.
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In order to assess the purity of T-projection for a large number of states and its
connection with the rovibrational characters of doubly excited states, we use the
configuration interaction method to obtain the two-electron wavefunctions. This is in
contrast to the earlier study of Watanabe and Lin (1986} where the T-projection was
investigated at a number of fixed values of hyperradius R using wavefunctions calcu-
lated in hyperspherical coordinates. The computation and the method of analysis are
described in section 2. The results are discussed in section 3 and a short summary in
section 4.

The validity of the molecular modei of atoms has been studied by Hunter and
Berry (1987) also where they calculated the overlap of the c1 wavefunctions and the
rotor-vibrator wavefunctions for doubly excited states of He and alkaline-earth atoms.
Only the low-lying states were examined. The present calculation covers a larger number
of states, but only the T-projection is investigated.

2. Theoretical method of analysis

The non-relativistic Hamiltonian for the two-electron system considered is
H=-Wi—iVi-Z/n—-Z/rn+1/r,=H+H,+1/r,. (3)

In the c1 calculation the basis functions are constructed from the (anti)symmetrized
product of hydrogenic wavefunctions,

‘Dﬁmizrz('l; r,)
= \/%(Rn,l.("l)anlz(fz) }/.!,JZLM(FI o F2)
+(_1)sRn.i‘1(r2)anb(r1)Yi’,i’;LM(FZ, 7)) (4)
where Y is the two-particle coupled orbital angular momentum function and R,,(r)
is the radial solution of the single particle Hamiltonian. Doubly excited states are
usually embedded in the continuum. We obtain the ‘bound state’ part by excluding
orbitals in the basis functions which have lower principal quantum numbers than the
states of interest. The cr wavefunction is then given by
‘I’.{‘Ms(fl s )= r'Z , ailrlnlh‘pimﬁzh("n , 1) (5)
In the present calculation, a relatively large c1 basis set was used. For the 3{3!' and
3141' doubly excited states studied the number of basis functions is about 80-100. The
values of n, were fixed to 3 and 4, with 0< I, <n,. The values of n, range from 3 to
8, with the range of I, determined by the total L, § and . The wavefunctions calculated
from such a basis set are then analysed.
In the body frame the wavefunction takes the form

VM (e, p) = Q:Z_,_ dro(ri, r2, 0:2)Domle, B, ¥) ()

where Dgu (e, B, ¥) is the rotation matrix and Yiolr, ra, 812) is only a function of
the radii of the two electrons and the angle between them measured from the nucleus.
We choose the body-frame z axis to be along the interelectronic axis and the x axis
on the plane spanned by r; and r,. Under such a rotation, the radial part of the
wavefunctions remains the same, but the angular part becomes

Yﬁr(ﬁn 72) =E Yr,lzLo(eg, 0; 63, O)DéM(as B, ¥) (7)
Q
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where 6, and @) are angles of the two electrons with respect to the z axis in the body

frame. From the geometry it is clear that

Fi=1y COS 912

L

cos ) =—5— i72
(r1+r2—2r]r2 CcOs 612)

F,— 7, COs 02
2 7z
(r2+r3—2rr,cos 6,5)"?

We can rewrite (6) in terms of symmetrized D functions as

cos 05 =—

L
WM, n)= Tgﬂ gerln, 1, 61)

x VI N(Dl(a, B, v) + m(~1)" "D p(a, B, 7))
where N=1if T#0and N=1/v2if T=0, and
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9

(10)

The integration of |, |* over r,, r, and 6,, gives the fraction of the projection of the
total angular momentum along the interelectronic axis with component T. The three-
dimensional integration can be carried out using Gauss-Laguerre and Gauss-Legendre

quadratures,

3. Results and discussion

3.1. The purity of the T-projection along the ;(2, 0)3 rotor series

Doubly excited states which have identical K and T quantum numbers are known to
form a truncated rotor series. In figure 1, we examine the purity of the T =0 component
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Figure 1. Fraction of the T =0 component of the projection of L along the interelectronic
axis for the 4(2,0)7 rotor series of H™ (full circles), He (full diamonds), C** (triangles)

and DESE functions (open diamonds).
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along the 3(2,0); rotor series for different systems. This rotor series is truncated at
'G*, i.e. L=4. Four systems are included, H™ (full circles), He (full diamonds), C**
(triangles) and DEs® states (open diamonds). The DEsB states are the eigenstates for
the system where the nuclear charge approaches infinity. For the 'S° state, the total L
is zero and the projection has 100% T =0 component. As L increases, the fraction of
T =0 component decreases. Recall that in the molecular interpretation, T is an exact
quantum number. Thus the purity of T reflects the accuracy of the molecular representa-
in turn is more ‘molecular’ than C**. The pEsp functions, which are the eigenstates
corresponding to Z -0, are the least ‘molecular’. For the last member of this rotor
series, 'G®, it has 52% of the T =0 component for C**. This fraction increases to 65%
for He and to 80% for H™. From the <1 viewpoint, this increasing purity is related to
stronger intershell mixing as Z decreases, as well as to the gradual decrease of the
shell structure.

The truncation of the rotor series, which is not predicted by the molecular models,
is related to the failure of the later models for describing the high-L members of the
rotor series. These high-L members still preserve a number of aspects of the shell
model of atoms. Thus these states show rotational contraction with increasing L (which
can be easily interpreted using the shell model (Dunn et al 1990)) rather than the
rotational expansion expected from the molecular model.

3.2. The purity of the T-projection along the ;(1, 1)7 and 2, 0); rotor series

In figure 2 we show the T-projection for the ;(1, 1)7 rotor series of He and for ness
states. This rotor series has three states, 'P°, D¢ and 'F°, with T=1 as the dominant
component and the series terminates at I = 3. The lowest state again has a large fraction

................. y in that the projection
along the interelectronic axis is almost a good quantum number. For the L =3 state,
the T =0 component is about as large as the T =1 component, and this state is not
well represented by a molecular picture.
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Figure 2. Fraction of the T =1 component of the projection of L along the interelectronic
axis for the (1, 1)3 rotor series of He (full diamonds) and pESs functions (open diamonds).
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In figure 3 we show the fraction of the T =0 component for the ,(2, 0)5 rotor series
for He and for pesB functions. This group belongs to the manifold of 3/41" doubly
excited states. The purity of the T =0 component for this series is less than that for
the ;(2, 0)7 rotor series considered in figure 1, but the difference is small.

3.3. The purity of T-projection along the double Rydberg series
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Figure 3. Fraction of the T =0 component of the projection of L aiong the iniereiectronic
axis for the ,(2, 0)5 rotor series of He (full diamonds) and DESB functions (open diamonds).
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Figure 4. Fraction of the T =0 component of the projection of L along the inter¢lectronic

axis for the (N — 1, 0)% double Rydberg series of He. N =3, full diamonds; N = 4, open
diamonds; N =5, full triangle; N =6, open square.
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Figure 5. Fraction of the dominant T-projection for the 3/31" doubly excited states of He.
Each state is designated by the (K, T) quantum numbers given at the bottom of the column.
For each pair of K and T, the energy of each state is ordered to show the rotor structure.
The entry above each bar gives the fraction of the T-projection of that state where T is
the integer designating that state. For T # 0, T-doubling is indicated for each pair.

the T=0 component of the (N —1,0)% double Rydberg series. One can see that for
each L, the fraction of the T =0 component is larger for the N =4 state than for the
N =3 state. However, the increase with N is quite slow, see the results for L=4. The
calculations were carried out for the He.

3.4. The purity of T-projection along the rovibrational states and T-doubling states

In figure 5 we show the energies and the fraction of the T-projection for the 3131
states of He, arranged such that each column has fixed X and T quantum numbers.
The entry above each bar indicates the fraction of the T-projection of that state while
the energy is indicated by the position of the bar with reference to the energy scale in
the vertical axis. The decreasing fraction of this projection along the rotor series has
been addressed above. Here we compare the fraction between pairs of T-doubling states.

The energies of each T-doubling pair of states are degenerate in the molecular
picture if T is treated as a good quantum number. From this figure, it is clear that
within each T-doubling pair, the state which has the higher percentage of the projected
T component is lower in energies. In general, higher members of the rotor series have
smaller fractions of the dominant T projections.

Similar compatison can be made for the A=+1 and A= —1 manifolds of the 314/
doubly excited states of He, see figure 6(a) and (b). There is no evidence that the
fraction of T-projection differs significantly between intra- and intershell states.

4. Summary and discussion

In this paper we explored the limitations of the simple molecular description of doubly
excited states by examining the purity of the fraction of the projection (T) of the total
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Figure 6. The same as figure 5 except for the 314!’ states for (a) A = +1 states, (b} A=—1
states.

orbital angular momentum L along the interelectronic axis. A large number of doubly
excited states belonging to the 3131' and 3/4!' doubly excited states were calculated.
We showed that the small-L members of the rotor series in general have a single
dominant T component, as described by quantum number T in the (K, T)* or other
equivalent classification schemes. For large-L members of the rotor series, the mixture
of different T components is often quite significant. These latter states are not well
represented by the molecular picture.

We have also shown that the splitting between each pair of T-doubling states is
due to the deviation from the simple molecular description. In other words, the small
admixture of other T-component(s) is responsible for the splitting. The lower energy
state within each pair always has the larger percentage of the dominant T component.
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We thus conclude that deviations from the simple molecular prescriptions, such as
the rotational contraction and the T-doubling, can all be related to the fact that T is
not a rigorous quantum number for doubly excited states. The deviation becomes more
significant in general as the angular momentum L increases.

One can also discuss doubly excited states with reference to pesn functions. The
pess functions also predict rotor-like structure for the energy levels of doubly excited
states, but the origin of the rotor structure is due to the Coulomb repulsion between
the electrons (Watanabe and Lin 1986) which differs from the molecular model where
the rotor structure is due to the kinetic energy. The pEss functions, which contain
information about the shell structure of atoms, predict directly the rotational contraction
for large-L states and truncation of the rotor series. It also predicts the existence of
T-doubling. All of these can be understood from the cr or the pess functions (Dunn
et al 1990) where high-L doubly excited states are composed of high-! orbitals from
each electron. Recall that the size of the radial wavefunction decreases with increasing
! for each n.

In summary, if the validity of the molecular picture is measured in terms of the
purity of the T-projection along the interelectronic axis, then deviations from the
molecular behaviour for each state can be assessed. We have shown that for each given
state, deviations from the molecular description decrease with decreasing nuclear
charge. The origin of the rotor structure for each state tends to be dominated by the
potential energy term for the high-Z element and by the kinetic energy term for the
low-Z element. The latter has also been analysed by Dunn ef af (1990).

We need to point out that while deviations from a single T component can be used
to assess the degree of violation of a molecular picture, the reverse is not true. A pure
T-component does not imply that the system is close to a molecular description. As
shown in equation (1), a Rydberg state will also have a nearly pure T-component
which by no means implies that the two electrons are closely related as in a molecular
description.
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