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The adiabatic channel wave functions of Coulombic three-body systems are investigated in mass-
weighted hyperspherical coordinates. We consider the ABA Coulombic systems, where two of the
particles are identical, and examine the density distribution functions at fixed hyperradii R for
different systems as the mass ratio A = ma/mp varies from the atomic limit (A — 0, as in H™) to
the molecular limit (A — oo, as in Hz *). The bonding and antibonding as well as the rovibrational
characters of the three-body systems are illustrated by these density plots.

PACS number(s): 31.20.Tz; 31.10.4z; 31.15.4q

I. INTRODUCTION

The discovery of moleculelike normal modes [1-3] of a
pair of electrons in doubly excited states of atoms has
furnished a new perspective on the study of electron cor-
relations [4]. The two electrons perform motion akin to
the rotational and vibrational motion of a floppy ABA
molecule, where A represents the electron and B the nu-
cleus. The rovibrator model was first discovered from the
energy-level structure of doubly excited states within the
group-theoretical framework [5]. A more direct visual-
ization was achieved by the partial display of the wave
functions in the conventional independent-particle coor-
dinates [6] and in hyperspherical coordinates [2-7].

The original group-theoretical approach [8] derived two
new quantum numbers, K and 7, which replace the
¢y and ¢, quantum numbers of the two electrons used
in the independent-particle model. Later works showed
that the K and 7" quantum numbers can be interpreted
as similar to the bending vibrational quantum number
v = N — K — 1 and the vibrational angular momentum
¢, = T of alinear ABA molecule [6-9]. A further analogy
was taken by treating the H™ ion similar to the molecular
Haot ion [10]. In the latter approach the interelectronic
distance r;, is treated as the adiabatic parameter, sim-
ilar to the role of the internuclear distance in the Born-
Oppenheimer approximation for the molecule, and the
quantum numbers K and T can also be identified with
the Hy ¥ molecular quantum numbers ng and m where n;
is the quantum number in the spheroidal parabolic coor-
dinate £ and m is the projection of the orbital quantum
number along the internuclear axis. A summary of these
relations was given in Ref. [10(b)] as well as in Appendix
A of Ref. [11].

The equivalence of these different sets of approxi-
mate quantum numbers implies that there are general
characteristics in Coulombic three-body systems, ABA,
where the physical properties do not depend sensitively
on the masses of the particles in the system. Defining
A = my/mpg, we note that the K and 7' quantum num-
bers were used for A < 1, vy and £, were used for A = 1,
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and ng and m were used for A 3> 1. The equivalence of
these systems motivated us to find a unifying theoreti-
cal framework to treat Coulombic three-body systems of
arbitrary masses.

In two previous papers [11, 12] we showed that the
mass-weighted hyperspherical coordinates provide a con-
venient basis for studying general three-body systems.
By treating the hyperradius as the adiabatic parameter,
a computational procedure was developed by Chen and
Lin [11] where the adiabatic potential curves for arbitrary
mass ratio A were calculated. The equivalence among the
above three sets of descriptions becomes evident by com-
paring the adiabatic potential curves for different A’s. In
particular, the rovibrational behavior of the ABA system
has been identified for a certain class of states where its
existence does not require that the mass of particle A be
large compared to the mass of particle B, as commonly
assumed in the case of Hy *. Rather, the rovibrational
behavior was attributed to those states that are local-
ized near the saddle point of the potential surface. It
is the small vibrations near the saddle point that pro-
duce the rovibrational spectra. In fact, without imposing
any constraints on the masses of particle A and particle
B, the molecular rovibrator structure emerges from the
calculated adiabatic potential curves for a certain class
of states for systems like e“ete™ and H~. Thus the
traditional condition of large masses of the constituent
particles for the existence of rovibrational spectra is too
restrictive.

The results of Ref. [11] also indicate that, while to
first order there is a complete equivalence among the
approximate quantum numbers from different regions of
A’s, deviations from the rovibrational behaviors do be-
come more significant as the value of A decreases and for
states that are not localized near the saddle point. For
the latter states the deviation is so large in the small-A
limit that the rovibrational behavior is lost. For these
states, particle B tends to stay closer to one of the two
identical particles A such that a description closer to the
independent-particle model becomes more relevant. Such
states can be partially inferred from the variation of the
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calculated potential curves with A, but more definite il-
lustrations can be achieved only by analyzing the wave
functions or the density distributions.

In this paper we compare the density distributions
for different states of Coulombic three-body systems at
fixed-scaled hyperradii in the body frame to illustrate
the shape of each system as the mass ratio A varies. The
wave functions or the density distributions for each class
of states, identified by the equivalent set of (K, T), (va,
¢,), or (ng, m) quantum numbers, are displayed together
and compared for different A’s at the equivalent hyper-
radii. In Sec. I A we review briefly the hyperspherical
methodology to define the notations used in this work.
This is followed by transforming the wave function to the
body frame from which the density function at each hy-
perradius is derived. The results are presented in Sec.
111, where we compare the density functions for different
channels for various masses of the three-body systems. A
short conclusion is given in Sec. IV.

The hyperspherical approach has been applied to the
e~ete~ system previously [13] using a different numeri-
cal approach. Only ! P° states were considered.

1I. METHODS OF CALCULATIONS
A. Summary of the hyperspherical methodology

For a three-particle system, three sets of Jacobi coor-
dinates can be defined, see Fig. 1. For the present ABA
system, the «a set corresponds to that used for Hy +. The
B set and v set coordinates are equivalent under the ex-
change between the two identical particles; they are the
coordinates used for describing the atomic systems such
as He and H™. For each set of Jacobi coordinates we can
define two mass-weighted vectors

& = (/)% py

(1)
€ = (p2/w)*? py

where p; and p, are the reduced masses associated with

(@) ® ©
B B
A o\ 7,
7, 3,
A 5*1 A A A A A
o set B set Y set
FIG. 1. The three Jacobi coordinates for the three-body

systems.
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each vector p; and p, (see Fig. 1), respectively, and u
is arbitrary, which was set to unity in this paper. For
each set we also define a hyperspherical radius R and a

hyperangle ¢,
R*=¢l +¢5 ,
(2)
tang = &2/&1

where the hyperradius R is invariant among the three
sets of Jacobi coordinates. In terms of the mass-weighted
hyperspherical coordinates the kinetic-energy operator is
rewritten as

2 2
(Ll oy o)

2u \OR? R OR R?
where Q@ = (¢,&,,€,) are the five angles and A? is
the grand angular momentum operator [see Eq.(4) of
Ref. [11]]. The advantage of the mass-weighted hyper-
spherical coordinates is that except for the trivial mass
scaling, the kinetic-energy operator does not depend on
the masses of the system. Instead, the masses enter in
the potential-energy term.

We solve the Schrédinger equation in hyperspherical
coordinates using the adiabatic approximation with the
hyperradius as the adiabatic parameter;

U(R,Q) =3 Fu(R) ®,(Ri ), )
where
(AZ_ZQJ +2uV(R, 9)) ®,(R;Q) = U,(R) @,(R; Q).
(5)

In Eq.(5), V(R,Q)=C(¢,012)/R is the potential en-
ergy of the whole system and C is an effective charge that
depends only on the angles ¢ and 65, where 6;5 is the
angle between the two vectors p; and p,. In Ref. [11] the
potential curves U, (R) had been calculated for a number
of A’s and different total orbital (L) and spin (Si2) an-
gular momenta and parity (7). (In designating the total
spin angular momentum, we follow the convention used
in atoms where the spin of particle B is not included.)
Our goal in this paper is to analyze the wave functions
®,(R; Q) to extract the shape and other properties.

B. Hyperspherical channel functions

The numerical procedure for calculating the channel
functions ®,(R;2) and the potential curves have been
described in Ref. [11]. For the ABA system, the vth
channel function is written as the linear combination of
basis functions in 3- and y-set coordinates,



5470 XIAN-HUI LIU, Z. CHEN, AND C. D. LIN

P,(R; Q) =

£1,82,n
where

fllt’" (R;¢) = ge‘ew (R; #)/sin¢ cos ¢
is the solution of the following equation:

_d_z___l_+f1(f1+l) £5(62 + 1)
dé? 4

cos? ¢ sin“ ¢
Vit (R, ¢)

=< leezLMlRV(R, Q)lYlllgLM > .

+ 2uRV*(R, ¢)) 97" (R ¢) =

kS

Z Af/lezn(R) [féllzn(R; d’ﬁ) Ye,eonm (éf)ég) + (_1)11-’-312 ffltzn (Rx ¢‘y) Ye,0oom (é'ly’é;)] ) (6)

(7

Ut (R) 97" (R;¢) , (8)

(9)

The functions g(R; @) are calculated by solving Eq. (8) numerically. In the equations above, Yy, ¢, is the coupled

angular momentum function.

To express the channel function in the a-set coordinates, we first expand the basis function f in terms of Jacobi

polynomials at a given R,

=3 patn(R) P (4P) .

m

" (R 6°)

(10)

By using the transformation brackets [14] to rewrite the hyperspherical harmonics in the 8- and y-set coordinates in
terms of those in the a-set coordinates, the channel function is then expanded as

@, (R; Q) =

Z Alltzn(R)Zbllezn(R)Z Eg]“ﬂaa

IR [K"]

where a is the transformation bracket that is the overlap
between the y[x) hyperspherical harmonics in the a-set
coordinates and the y[x) hyperspherical harmonics in the
[B-set coordinates

C. Transformation of the wave function
to the body frame

In order to study the geometry of a three-body system
at each hyperradius R, it is necessary to express the wave

function in the body frame. Let (i,j, k) be the three axes
j

Vo @)Y @lant = 3 Chlnq Dl (@) Vg 022,0) (2472
Q

Eq.(11) is finally written as

®,(R;Q) =
£ 820 (K]

L
x Zceg'%egq D§y(w) Yeyq(12,0) ( an
Q

14 (=1)A+52]y 0 (Q%) (11)

of the laboratory frame and (1”,3”,k”) be the same for
the body frame. The transformation from the laboratory
to the body frame is accomplished by a rotation matrix
R(afvy) where e, B, and v are Euler angles. In the body
frame, the polar axis k” is defined to be along £1, and
1 is deﬁned such that &, is on the (2”,k"”) plane. Using
this definition, the spherical angles in the body frame are
& = (0,0) and €2 = (612,0). Thus the Euler angles for
the rotation are « = ¢;, f = #;. The volume element
transforms as

d€,d€, = sin 0,,d6,,sin B da dB dv . (12)

Using the relation

1/2
26 + 1) , (13)

Z Aellzn Z blltgn(R) Z ﬁ!ﬁa[l + (_1)¢;l+512]P'Ef12’£1 )(¢a)

1/2

D. Density distribution

The surface density distribution is defined as

ps(R; 6%,05) = / 1@, (R; )| 6(02, — 0,) 6(6% — ¢')d

=sin 0%, cos? $* sin’ ¢°’/|<I>,,(R; Q)|*sin Bda dB dy . (15)
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To simplify Eq.(15), we use
» : 8m?
/DgM(w) D§ipp(w)sin BdadBdy = ST Sve Smm (16)
(200 + )2 + D\ Y2 ,
Ye_q(612,0) Yerrg(612,0) = ; ( 241r(2)L(' +21) ) Chiowo CE qung Yoro(612,0) (17)
and
Z< 19 Cpi&a Crituma Chilaumg = (~1)F+E (L +1) Clilyne W52/ LL') (18)
to obtaln the final expression
n n o " . elzllll
pollen 03 = 30 AL S S el + ()R
£,,82,n [K']
& ehn’ ¢ ehn’ K'|Ba 45121 DS ) o
x D0 AR ) 3 afgeo "1+ (=D 91 P ()
e, e,,n! (K]
x Z(-1)L+L’\/[(2e'; +1) (265 + 1) (26 + 1) (265 + 1)/21Ck: S
XCeuoeulO W(eyeseley’ LL') Pri(cos0%,) sin 05 cos® ¢* sin® ¢* . (19)

In the equations above, the C’s are the Clebsch-Gordan
coefficients and the W’s are the Wigner W coefficients.

The above expansion formulas are inaccurate at large
R where the expansion equation (10) would require a
large number of hyperspherical harmonics. An alterna-
tive expansion is used, see the Appendix.

III. SHAPE AND DENSITY FUNCTIONS
OF COULOMBIC THREE-BODY SYSTEMS

In this section we examine the density distributions
for the channel functions at a fixed hyperradius in the
a-set coordinates. Four values of the mass ratio A were
chosen: A = %, 1,3, and 17.7. The A=11is for the e"ete™
and A=17.7 is for the dtpu~dt. The other two cases
are for fictitious systems, although A=3 is quite close to
a TK K system that has A=3.53. Typically, 8-12 basis
functions in f-set (and 7y-set) coordinates are used in
each calculation, as in Ref. [11]. The calculated density
plots are to be compared at comparable values of the
hyperradius for different A’s.

The size of a bound state of an ABA Coulombic three-
body system can be estimated from the size of bound
states in the two-body system AB. To compare the
density plots for different systems in the mass-weighted
hyperspherical coordinates, the values of the hyperra-
dius for different A’s have to be suitably scaled. This is
best examined in the 3-set (or y-set) coordinates where
p1 measures the distance between the pair AB. Re-
call that in f-set coordinates, & = /u; p1, & =
VHEz2 p2, where p; = myamp/(ms + mp) and ps =
‘ma + mpg)ma/(2mas + mp). (All the quantities in
this paragraph refer to (-set coordinates.) We consider
states where p; = py. In this limit the hyperradius is
R? = py1p} + papd = (p1 + p2)p;. The distance p;
between A and B is scaled by its reduced mass, thus
p1 = p1(H™)/puy where pi(H™) is the average distance

between the electron and the proton in H™. This simple

estimate allows us to express R = (\/p1 + p2/p1)R(H™)
where R(H™) is the hyperradius for the H™ system. The

scaling factors 7(A) = /p1 + p2/p1 are 1.66, 2.16, 2.09,
and 3.35 for A = 3, 1, 3, and 17.7, respectively. We
checked and established the validity of this scaling by
comparing the values of R where the potential curve
reaches the mimimum. (See, for example, the v=1 and
2 curves shown in Figs. 1 and 7 of Ref. [11].) Thus for
the graphs shown below, a value of R(H™) is first cho-
sen, the density plot for each A is then presented for the
corresponding value of R where R = 7(\) R(H™). The
mass of the lighter particle is taken to be unity for each
system.

A. Potential surface and density functions
of the ground-state channels

As stated earlier, in the mass-weighted hyperspherical
coordinates, the kinetic-energy operator is the same for
all three-body systems. The differences are in the poten-
tial energy, which has the general form C(¢,6:12)/R. As
we have shown previously [12], the potential surface ex-
hibits spectacular resemblances in the a-set coordinates.
The potential surfaces for the four different A’s are shown
in Fig. 2, both in surface plots and in contour plots. The
surface plots provide a better perspective, but contour
plots give finer details. Since the wave functions at each
hyperradius R are eigenfunctions on each potential sur-
face, the nature of the potential surface is used to inter-
pret the calculated density and shape functions of each
three-body system.

Each potential surface has a number of features that
should be mentioned. The potential is symmetric with
respect to f12 = 90°. The interaction between the
two identical particles gives rise to a repulsive “wall” at
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¢ = 90°. The attractive interaction between B and the
two identical particles A gives rise to two deep poten-
tial valleys at (¢°,012 = 0°) and (¢°,6:2 = 180°) where
tang® = 14/(p2/p1). The saddle point of the Coulombic
three-body system is at the midpoint of the line connect-
ing the two identical particles. Strictly speaking this sad-
dle point occurs when &3 = 0, which is the ¢ = 0 line in
the a-set coordinates. However, a stable oscillation (per-
pendicular to the line connecting the two identical parti-
cles) near the saddle point corresponds to #12 = 90° and
we can take the saddle point to be at (¢ = 0,6;2 = 90°).

@ A=177

T

— .

I Mﬂﬂ

FIG. 2. The potential surface shown on the (¢%, 67;) plane
of the a-set coordinates at R = 1 for A = %, 1, 3, and 17.7.
Both the surface and the contour plots are given. The valleys
shift to small values of ¢ as X increases. The saddle point
occurs at ¢* = 0 and 67, = 90° for each figure.
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The density plots for the adiabatic wave functions be-
longing to the first potential curve, v = 1, for 15°¢ at
R(H™) = 2 for the four systems are shown in Fig. 3. At
this value of R(H™), the » = 1 potential curve for each A
reaches the minimum. These graphs are to be examined
with reference to the potential surfaces given in Fig. 2.

To understand these graphs, we first note that the den-
sity distribution is determined by the kinetic-energy op-
erator A2/R? and by the potential-energy operator C/R
[see Eq.(5)]. At large R, where the potential-energy term
dominates, the wave function is expected to localize near
the valleys of the potential surface. At small R where the
kinetic-energy term is dominant, the wave function is rep-
resented approximately by the hyperspherical harmonics,
which are the eigenfunctions of the kinetic-energy oper-
ator A2/R?. The density plots shown in Fig. 3 are from
wave functions at values of R, where contributions from
the potential- and kinetic-energy terms are comparable.

The density plots for the four different A’s shown in
Fig. 3 have very similar shapes. Since each is derived
from the ground-state wave function at the given R, each
density function exhibits no nodal lines. Since it is for

(b) A=1

ki

0
0 Q) T
© A=3 d A=17.7
&-——‘/_-‘
2’
0
FIG. 3. Density distributions for 'S¢ and v = 1 states for

various A’s at R(H7) = 2. The density does not show any
nodal lines for these lowest channels. Note that the density
plot for dud can be expressed as in (e) in terms of the two
angles (x,#012) where angle x is rescaled from ¢; see text.
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FIG. 4. Same as Fig. 3 but for R(H™) = 7.8. The density

distribution is localized at the potential valleys.

1G¢ symmetry, each wave function is symmetric with re-
spect to 612 = w/2 and thus 6;2 = /2 is an anitnodal
line. The major difference among the plots is that the
density is “squeezed” toward ¢ = 0 as A increases. This
is the consequence of displaying the density in the mass-
weighted hyperspherical coordinates. If one defines a hy-
perangle x in terms of actual distances p; and ps (in the
a-set coordinates) by tanx = p2/p1 = \/p1/p2 tang, the
density in the (x,612) plane would then occupy about
the same space. This is illustrated by redrawing the den-
sity in the (x, #12) plane for the dud system, as shown in
Fig. 3(e). The latter occupies about the same space as
the one for A = 1 shown in Fig. 3(a).

As the hyperradius increases, the solutions of Eq. (5)
become dominated by the potential-energy term such
that the wave function is confined to the potential val-
leys. This is shown by displaying the density functions at
R(H™)= 7.8 (Fig. 4). [Recall that the minumum of the
potential curve for this channel occurs at R(H ™) = 2]

B. Doubly excited channels

We next consider wave functions that belong to reso-
nances associated with the excited states of the AB sys-
tem. These states correspond to doubly excited states in
H~ or to electronically excited states in Ho *. In previ-
ous studies for H™, it has been found that these doubly
excited states display strong radial and angular correla-
tions. To illustrate the similarity in the shapes for dif-
ferent A’s, in Fig. 5 we show the density plots for the
v = 2 curves for the 'S¢ symmetry at R(H™)= 7.8. At
this value of R(H™) the v = 2 potential curve for each A
reaches the minimum. [The densities for the v = 1 curve
are confined to the potential valleys at this R(H™) for
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(@ A=+

(b) A=1

=

d A=177

The density distribution for the v = 2, 'S chan-

FIG. 5.
nel for the various A’s at R(H™) = 7.8. The distributions
correspond to particle B, which tends to stay near the mid-
point connecting the two identical particles.

each A, as shown in Fig. 4.] It is clear that the density
plots for all the A’s are very similar. Again the 6,5, = 7/2
line is an antinodal line where the density function peaks
at small and moderate values of R. This peak splits
into two as R increases. The density distribution con-
sists of the main peak(s) near the saddle point and two
minor peaks around the two potential valleys. The den-
sity plots also indicate that there is a nodal line separat-
ing the peaks around the potential valleys and the main
peak(s). The nodal line is expected since this is the first
excited channel (v=2) where the wave function is orthog-
onal to the ground channel (v=1). The nodal line is not a
straight line, but a curve, indicating the nonseparability
of the eigensolutions in the (¢, 612) plane. A more care-
ful inspection reveals that the density tends to maximize
near the small ¢ < ¢° region. This indicates that the
third particle B tends to stay close to the axis connect-
ing the two identical particles A, which corresponds to a
bonding configuration in molecules. In the case of H™,
this implies that the two electrons tend to maintain at
180° with respect to the nucleus, and in the case of Hy +
the electron tends to remain near the midpoint of the
internuclear axis. All the states belonging to the v = 2
curves shown in Fig. 5 have similar geometrical shapes.
The situation is different for the ¥ = 3 channel func-
tions, as shown in Fig. 6. We first note that this channel
has higher excitation energy than the v = 2 channel be-
cause its density distribution maximizes in the large-¢
region where the potential is more repulsive. The den-
sities near the saddle point and the small-¢ region are
small. Therefore the p, < p; region is not occupied and
thus particle B is less likely to be found near the line
connecting the two identical particles. In this geometry



5474

(b)y A=1

d A=177

(S )

FIG. 6. The density distribution for the v = 3, S chan-
nel for the various X’s at R(H™) = 7.8. The distributions
correspond to particle B, which tends to stay closer to one of
the two identical particles.

the third particle tends to stay closer to one of the two
identical particles. Based on the density plots in Fig. 6,
one can make quantitative statements. By normalizing
the distance between the two identical particles to unity,
i.e., paa = 1, the most likely geometry of the three-body
systems for the cases shown in Fig. 6 is triangles where
the base has a unit length, while the two other sides have
lengths (1.21, 0.44), (1.26, 0.43), (1.34, 0.48), and (1.50,
0.63), respectively, for A = %, 1, 3, and 17.7. For such
triangles the distance between B and one of the identical
particles A is about three times farther than from the
other identical particle.

To provide a better perspective of the relative intensi-
ties on the (¢,812) plane, we show the surface plots for
the » = 2 and 3 channels for the e"ete™ system at the
values of R given [Fig. 7(a)]. The density distributions
are localized at different regions of the plane for the two
channels. For v = 2, the positron tends to stay near
the midpoint of the interelectronic axis. In other words,
the two electrons tend to stay on opposite sides of the
positron. For v = 3, the positron always stays away
from the interelectronic axis. From the viewpoint of the
positron, the two electrons tend to stay on the same side
of the positron. These two possible types of geometry
are identical to those found earlier for H™ (see Fig. 8 of
Ref. [2]). We further show in Fig. 7(b) the same two
channels for dud. The resemblance of the geometry to
those shown in Fig. 7(a) is obvious.

C. Density plots along the rotational series

Doubly excited states in H~ and He have been shown
to display rotational structures for states that have nearly
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identical correlations. For the resonances below the
H(n=2) thresholds, the v = 2 curves for 1S, 3P°, and
1 D¢ symmetries are known to form a truncated rotor se-
ries. This implies that the density plots for these states,
after having been averaged over the rotations, are ex-
pected to have similar densities. This is illustrated for
the e"ete™ [Fig. 8(a)] and dud [Fig. 8(b)] systems. The
contour densities and the surface plots are both shown.
From Fig. 8 it is obvious that the major features of
the densities for the three different states are identical.
The contour plots show that the density tends to spread
more and occupies a larger portion of the (¢,6012) plane
with increasing L. Thus the increasing rotational angular

(@)

it
lm,Z’ll,

TR

TR

iy U, W
TN

g S

iy ,'7,,
il

1
T

2R
o,
,':,'n
l;l'.
]
%

,o.“
DN

T
ity gyttt g, o,
gy,
g
Wi lieghhle

(b)

wla

uml'llllmﬂlh X
i

»

FIG. 7.
the v = 2 and 3 channels (of 'S¢) for the e"eTe™ system.
The values of the R’s are shown. (b) R dependence of the
density distributions for the ¥ = 2 and 3 channels (of ' S°¢) for
the dt p~dt system. The values of the R’s are shown.

(a) R dependence of the density distributions for
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momentum does not change significantly the shape of
the system, in a way similar to that for a semirigid or
floppy molecule. This is the origin of the rovibrational
energy levels for the Coulombic three-body systems and
the results do not depend sensitively on the mass ratio

A.

D. Density plots for 2S¢ states

The examples given above dealt mostly with 1.S¢ states
where the wave function is symmetric with respect to the
612 = m/2 axis. For 3S¢ states, the density plots are very
similar to those for the corresponding 15° states, except
that the wave function is antisymmetric with respect to
the 612 = w/2 axis. This means that particle B is for-
bidden on the perpendicular plane which bisects the axis
connecting the two identical particles A. Besides this
difference, the shape densities are nearly identical. For
example, the density plots for the » = 2 and 3 channels
for 3S¢ symmetry are shown in Fig. 9. They are very
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similar to those shown in Figs. 5(b) and 6(b), except for
the symmetry with respect to the 6,2 = 7/2 axis.

IV. SUMMARY AND CONCLUSIONS

In this paper we examined the geometry of Coulombic
three-body systems by displaying the wave functions in
mass-weighted hyperspherical coordinates. Within the
quasiseparable approximation where each wave function
can be expressed as FJ'(R)®,(R;), information about
the shape and the geometry of a Coulombic system is
contained in the channel wave function ®,(R; <), which
has been shown to vary smoothly with R and where the
structure of the nodal lines changes adiabatically. We
have shown that it is most convenient to display the den-
sity distributions in the a-set coordinates (see Fig. 1),
especially if one is interested in studying the evolution of
the density distributions as the mass ratio A varies.

We have displayed the density distributions at a fixed
hyperradius for a number of channels and examined how

(b)

(a) Density distributions for the » = 2 channel for .S, > P° and * D® symmetries for the e"e*e™ system. Both the

surface and contour plots are displayed. (b) The same but for the d* p~d* system. Each group belongs to a rotor series and

is calculated at R(H™)=7.8.
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FIG. 9. The density plots for the » = 2 and 3 channels

for the 3S°® symmetry of e"ete™ at R = 20. Comparing to
Figs. 5(a) and 6(a), the major differences are only in the nodal
structure at 812 = 7/2.

B, (RQ)= Y ADLn

£,,83,n

< FL" (R; %)

costi+1 ¢8 sint2t! ¢b

where (8 — «) implies that the function in the previous
line is repeated except that every quantity in the (3-set
coordinates is replaced by its equivalent in the vy-set co-
ordinates.

To transform the (-set portion of (Al) to a-set coor-
dinates, we first note that

cos®t ¢ sin® ¢P Yo,0,im (85, €5)

2£1\— K o
= (06 L ) 1 Z GEK]//'[;(’)’[K/I](Q ) , (A2)
(K]

where 06"‘ is the normalization constant of the Jacobi
polynomial. This is simply the expansion of the hyper-
spherical harmonic yix for [K] = [£1,£2, m] = [£1,£2,0]
in the (-set coordinates to the hyperspherical harmonics
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they evolve with the values of A. For states that belong
to the same channel index v, we showed that the den-
sity distribution functions are very similar, implying that
the states that are labeled by the same set of quantum
numbers have similar geometries. This similarity in the
density distribution is further attributed to the similarity
in the potential surfaces when the latter are displayed in
the a-set coordinates.

From the density distributions, we can further deduce
the the geometry of the most likely configurations. We
showed that states that have larger density distributions
near the saddle point tend to be lower in energy, corre-
sponding to the case where particle B is more likely to
be found near the midpoint connecting the line between
the two identical particles. The small vibrations of par-
ticle B with respect to the saddle point of the potential
surface underlies the origin of the rovibrational spectra
for the Coulombic three-body systems.
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APPENDIX: TRANSFORMATION
OF WAVE FUNCTIONS BETWEEN DIFFERENT
JACOBI COORDINATES

The expansion given in Eq.(11) suffers from slow con-
vergence at large R. An alternative expansion method is
required. To this end, we first rewrite (6) as

[cos®* ¢P sin®2 ¢P Y, 0, 1m (€7,€5)) + (—1)01+512(8 — 7)) , (A1)

[

in a-set coordinates.

To transform ff‘t’"(R, #)/ costrtl ¢ sin®2*! ¢ from
the 3-set to a-set coordinates, we utilize the transforma-
tion relations between the different Jacobi coordinates.
From the geometry, in general,

cos P = ( cos? Nap cos? ¢% + sin? Nap sin? ¢*
—25in 7)4p €OS g sin ¢* cos ¢* cos 0?2)1/2 ,

cos ¢” = ( cos® nap cos® ¢* + sin? Nap sin? ¢

+25in 745 cOS 1) sin ¢ cos ¢* cos 0{'2)1/2 ,

(A3)

where
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cosNag = [mimz/(my + ma)(mg + m3)]1/2 ,

sin 745 = [ma(my + ma + m3)/(m1 + ma)(ma + m3)]1/2.

(A4)
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Combining (A2) and (A3), the B-set part of the basic
function can be expressed in terms of functions in a-set
coordinates. Similar expansion can be carried out for the
v-set part of (Al).
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