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A finite set of Slater-type orbitals is used as a basis to solve the Dirac equation for atoms in a
Dirac-Fock-Slater potential. The energy eigenvalues thus obtained are in good agreement with the
results from the numerical solution of the Dirac equation except that a spurious root always occurs
for k> 0. It is shown that despite this spurious root the method still gives good approximate atomic
energy eigenvalues and wave functions. This implies that the finite-basis-set expansion method can
be applied to relativistic atomic structure and atomic collision calculations.

I. INTRODUCTION

It is well known that approximate energy eigenvalues
and wave functions of atoms and molecules in a nonrela-
tivistic formulation can be conveniently calculated as ex-
pansions in a finite basis set. For example, many two-
center matrix elements are more easily evaluated in terms
of Slater or Gaussian orbitals than in terms of numerical
wave functions. Recently it has been demonstrated'—>
that inner-shell ionization cross sections can be calculated
with improved approximations if pseudostates, i.e., discre-
tized states with positive energies, are used to approximate
the final continuum wave functions.

In the study of inner-shell ionizations of heavy atoms
and the structure of molecules consisting of heavy atoms,
it is essential to take into account relativistic effects of the
inner electrons. In order to go beyond the simple first-
order Born approximation (or equivalently, the semiclassi-
cal approximation), it is computationally more convenient
to be able to represent both the initial and final wave
functions in Slater-type basis-set expansion. Similarly, in
constructing molecular orbitals for heavy atomic systems,
it is desirable to expand the molecular orbitals in terms of
analytical atomic orbitals on each center. This is particu-
larly important if the nonadiabatic coupling terms involv-
ing the derivatives of molecular orbitals are to be evaluat-
ed.

The finite-basis-set expansion method has been applied
to the solution of Dirac-Hartree-Fock equations for
closed-shell atoms® and for open-shell atoms.” However,
the method is not variationally stable since the Dirac
Hamiltonian is not bound from below. To avoid the vari-
ational collapse some projection techniques have been pro-
posed.g_lo This, unfortunately, introduces additional
complications to the Dirac Hamiltonian. In a recent pa-
per Drake and Goldman!! demonstrated that stable varia-
tional solutions of the Dirac equation for a pure Coulomb
potential can be obtained in a finite-basis-set expansion
method. When the number of Slater-type basis functions
is N, the 2N total energy eigenvalues split into N positive
and N negative values. All the negative eigenvalues lie
below E = —c? (m,=1 and c is the speed of light), and
all the positive eigenvalues behave as if the Dirac Hamil-
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tonian were a positive definite operator. However, they
found that a spurious root for positive energies always ex-
ists for k> 0. This spurious root is degenerate with the
lowest state of the corresponding —«. Methods have been
proposed to remove this spurious root by additional con-
straints'>~!° and criteria have also been given'®!’ to dis-
tinguish acceptable solutions from the spurious ones.

The works quoted above have been demonstrated for
the simple pure or modified Coulomb fields, or the more
complicated Dirac-Hartree-Fock equations. In this paper
we report the application of the finite-basis-set expansion
method to the solutions of Dirac equations in a Dirac-
Fock-Slater (DFS) potential. Our interest is in the use of
relativistic pseudostate wave functions for the calculation
of inner-shell ionization cross sections. In this paper we
confine ourselves to bound states only. The calculated en-
ergies and wave functions are compared with those ob-
tained from the numerical DFS calculations to establish
the validity of the method.

II. METHOD

Our method is essentially the same as that employed by
Drake and Goldman.!! The Dirac equation for an elec-
tron in a potential V' (r) is

HY=EY, (1)
where H is
H=ca-p+c?p+Vir), (2)
p is the momentum, a is a 4 X4 Dirac matrix, and ' is
0 O
B'= 0 —21|° (3)

where 1 is a 2 X2 unit matrix. In (2), the zero of the ener-
gy scale is shifted to the electron’s rest-mass energy and
the energy eigenvalue thus corresponds to the binding en-
ergy. Atomic units are used throughout this work.

The solution of (1) is expressed in the form

P, (r)/r X7

. m (4)
1Q,(r)/r X"

Yniem =

>
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where P, (r) and Q,,(r) are the large and small com-
ponents of the radial wave function, respectively, Xy is
the spin-angular-momentum wave function, and » is the
principal quantum number.

Following Drake and Goldman we expand the radial
wave function in terms of Slater-type orbitals (STO’s)
with noninteger principal quantum number,

Fop( =260 P[P 2Ry + 1]~/
X exp( —&iph) (5)
with
n"(p:nxp+(xz—22a2)'/2, ney=0,1,... (6)

where £, is the orbital exponent, I'(x) is the gamma
function, Z is the atomic number, and a is the fine-
structure constant. Drake and Goldman used a constant
value for §,,, but we choose different values for different
«x and p. Using the basis set defined by (5) with an ap-
propriate choice of n,, and §,,, the Dirac Hamiltonian (2)
with a DFS potential is diagonalized to obtain energy
eigenvalues and wave functions. Note that the same STO
basis set is used for both the large and small components.

III. RESULTS AND DISCUSSIONS

Calculations have been carried out for k=—1,1, —2 for
Z =29, 47, and 79. The atomic potential for each atom is
generated by a program equivalent to that of Liberman,
Cromer, and Waber.!®* The STO’s are chosen similar to
those used in the nonrelativistic theory. Thus, for exam-
ple, the basis set used for k=1 and k= —2 are identical.
To account for the additional node in the small com-
ponent for states with x >0, it is necessary to add an addi-
tional STO corresponding to the lowest state for —«. For
example, the lowest k= —1 STO is added to the k=1
basis set.
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FIG. 1. Relative deviation (%) of the gold 2p;,,-shell wave
functions obtained by the basis-set expansion method from the
numerical DFS wave functions. The solid circles represent the
deviation for the large component and the solid triangles indi-
cate that for the small component. The mean radial distance is
shown by an arrow.

When the basis size is N, the lowest N eigenvalues are
always less than —2c? in the present energy scale. They
correspond to negative-energy states. We exclude these
states from further discussion. In Table I we show the
basis set used and the resulting energy eigenvalues for
Z =79. We notice that the results from the diagonaliza-
tion are in good agreement with those from the numerical
solution of the Dirac equation with the same DFS poten-
tial which are given in parenthesis. We also note that in
every case the bound-state energies calculated from the
finite-basis-set expansion method are slightly higher than
the numerical results. If we view the numerical results as
exact for the given DFS potential, this result appears to
show that the finite-basis-set method also satisfies the
variational principle as in the nonrelativistic case. For

TABLE 1. Principal quantum number n and orbital exponent § for the Slater-type basis functions,
and the energy eigenvalues E obtained by diagonalizing the Dirac Hamiltonian with the DFS potential
for gold. The values in the parenthesis are the eigenvalues obtained by the numerical DFS calculation.

The spurious root is indicated by an underline.

Kk=—1 k=1 K=—2
n I E (a.u.) n & E (a.u.) E (a.u)
1 77.6 —2975.0 2 36.45 —505.78 —438.09
(—2975.4) (—506.30) (—438.11)
2 77.6 —526.85 2 16.70 —115.50 —100.46
(—526.91) (—115.58) (—100.46)
3 77.6 —124.99 3 36.45 —23.370 —19.747
(—125.03) (—23.399) (—19.744)
3 48.5 —27.477 3 16.70 —2.8893 —2.2577
(—27.485) (—2.8943) (—2.2567)
3 30.3 —4.2393 3 14.00 —0.1195 —0.089 67
(—4.2434)
3 18.9 0.2786 4 9.25 0.3684 0.4899
3 11.8 13.849 4 6.13 3.550 4.158
3 7.4 165.26 5 4.45 23.935 25.364
3 4.6 1229.6 5 2.50 136.07 137.27
3 2.9 7003.0 5 1.45 1117.4 829.68
1 77.60 —3057.1
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TABLE II. Comparison of the mean values of 1/, r, and r? for various shells in Ag obtained by the basis-set expansion method

with those by the numerical DFS calculation.

(r=1 (r) (r?)

Shell DFS* BS® DFS BS DFS BS

s 49.51 49.51 3.105[—2]° 3.105[—2] 1.303[—3] 1.303[—3]
2s 11.44 11.44 1.340[— 1] 1.340[— 1] 2.122[—2] 2.122[—2]
2pin2 11.43 11.43 1.134[ —1] 1.134[ —1] 1.581[ —2] 1.581[ —2]
2p3) 10.74 10.74 1.185[—1] 1.185[ —1] 1.712[ —2] 1.712[ = 2]
3s 4.020 4.020 3.653[ —1] 3.653[—1] 1.528[ —1] 1.528[ —1]
3pin 3.933 3.933 3.562[ —1] 3.552[ —1] 1.475[ —1] 1.463[ —1]
3pin 3.763 3.769 3.670[ —1] 3.658[ —1] 1.564[ —1] 1.549[ —1]
45 1.543 1.542 9.001[ — 1] 9.006[ — 1] 9.185[ —1] 9.191[ —1]

2Numerical DFS calculation.
Basis-set expansion.
¢3.105[— 2] means 3.105x 102,

k=1 we note that there is a spurious root which is indi-
cated by an underline. While for a Coulomb potential,
this spurious root is degenerate with the root for k= —1,
in the DFS potential it is slightly lower. If we exclude
this root, the energy spectra of k=1 are still well behaved.
In the case of a Coulomb potential, the origin of the
spurious roots and methods of eliminating these roots
have been discussed by Goldman.'?

We have compared the wave functions obtained from
the finite-basis-set expansion method with the numerical
results. The agreement for both the large and small com-
ponents is good. One may wonder how the spurious root
would affect the other wave functions. In Fig. 1 we show
the 2p,,, radial wave function for Z =79. The relative
difference ( Rgs — Rpgs)/Rprs is plotted as a function of
r, where Rps(r) and Rpgg(r) are either the large or small
component of the wave function from the basis set and

from the numerical solutions, respectively. The location
of the mean radial distance is indicated by an arrow.
From this figure we note that the error is very small
everywhere except in the region where the wave function
is small. This occurs for both the large and small com-
ponents at large r and for the small component near
r=0.075 a.u. where the function has a node. This result
demonstrates that the basis-set expansion method can
reproduce numerical DFS wave functions even in the
presence of a spurious root.

To illustrate the quality of the wave functions obtained
by the basis-expansion method, we show the expectation
values of 1/r, r, and r? for various shells of silver
(Z =47), and compare it in Table II with the results ob-
tained from the numerical DFS wave functions. The
agreement is again very good. The exponents in the
STO’s for Ag were obtained from those for Au by a scal-

TABLE III. Comparison of K x-ray transition rates (eV/#). 3.829[ —7] means 3.829x 10~".

Z RHFR? DFS® Present
29 KL, 3.829[—7]° 3.929[ —7] 3.922[ —17]
KL, 0.1885 0.1942 0.1948
KL; 0.3656 0.3788 0.3787
KM, 7.166[ —8] 7.637[ — 8] 7.650[ —8]
KM, 0.02199 0.023 55 0.023 61
KM, 0.04273 0.046 05 0.046 07
47 KL, 6.476[ —5] 6.559[ —5] 6.559[ —5]
KL, 1.559 1.571 1.571
KL, 2.898 2.962 2.962
KM, 1.669[ —5] 1.695[ —5] 1.693[ —5]
KM, 0.2532 0.2583 0.2587
KM, 0.4920 0.5018 0.5028
79 KL, 0.01799 0.01812 0.018 10
KL, 14.15 14.36 14.35
KL, 23.91 24.43 24.43
KM, 5.558[ —3] 5.657[ —3] 5.640[ —3]
KM, 2.645 2.688 2.687
KM, 5.074 5.201 5.199

2RHFR method (Ref. 20).
*Numerical DFS method.
“Basis-set expansion method.
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ing proportional to the atomic Z number. No optimiza-
tion was attempted.

Using the wave functions obtained by the present
method, the K x-ray transition probabilities were calculat-
ed for copper, silver, and gold. The calculations are based
on the expression derived by Scofield.!® The basis set for
Cu was taken from Kagawa.” In Table III we compare
the transition rates from the present calculation with
those obtained by numerical DFS wave functions and
with the values calculated by the RHFR method.?’ The
present results are in good agreement with DFS values.

IV. CONCLUSION

The finite-basis-set expansion method using STO’s with
noninteger principal quantum numbers has been applied
to the Dirac equation with DFS potentials for atoms.
With a small basis set, the energy eigenvalues and wave
functions obtained are very close to those from the nu-

merical solution of the Dirac equation using the same po-
tential. For x>0 we note that there is always a spurious
root corresponding to the smallest positive-energy eigen-
value. This root is easily identified and it poses no practi-
cal limitation to the application of the basis-set expansion
method to relativistic atomic and molecular problems.
Using pseudostates generated from the basis-set expansion
method we are in the process of calculating inner-shell
ionization cross sections in ion-atom collisions for heavy
atoms.
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