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The screening constant in the double Rydberg formula is estimated using the intrashell
configuration-interaction states. Its explicit dependence on the bending rovibrational quantum num-
bers is included. Comparison of the energy levels so obtained with elaborate numerical results indi-
cates its utility for doubly excited states of highly charged ions and also points to its geometrical ori-
gin. Procedures are introduced to generalize the formula to intershell doubly excited states and to
doubly excited states of multielectron atoms. A number of specific numerical results are presented.

I. INTRODUCTION

The identification and classification of doubly excited
states! has been one of the central themes of theoretical
and experimental investigations in recent years. For neu-
tral atoms these states have been observed by single-
photon or multiphoton absorption.>® For negative ions
these states have been identified by measuring the yield of
metastable atoms resulting from electron-impact excita-
tions. In these experiments doubly excited states are
formed through electron-electron correlations. In recent
years doubly excited states of positive ions have been ob-
served in the collisions of multiply charged ions with
atoms by translational spectroscopy’® or by zero-degree
spectroscopy.® In these collisions doubly excited states are
formed most frequently by double-electron-capture pro-
cesses’ or by simultaneous electron capture and excitation
of the projectiles.

Despite intensive studies over the years, our knowledge
of doubly excited states is still limited. Experimental
identification of individual doubly excited states is ham-
pered by the need of high-resolution electron or ion spec-
troscopy. Theoretical studies are handicapped by the slow
convergence of computational approaches and by the need
of dealing with many doubly excited states in a narrow
energy region. Extensive calculations have been complet-
ed only for some low-lying doubly excited states of helium
and several low-Z heliumlike ions. Even today the energy
levels of doubly excited states remain thus largely un-
known.

In this paper we present a simple approximate formula
known as the double Rydberg formula® for estimating the
energy levels of a certain class of doubly excited states of
atoms. Our formula is based on the current understand-
ing of the correlation of two excited electrons in the
framework of the recently proposed classification
scheme.’ Similar double Rydberg formulas were derived
by Read® and by Rau'® previously in connection with the
energy levels of negative ions. Our derivation and inter-
pretation differ from theirs.

This paper is organized as follows. Section II derives
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the double Rydberg formula from the variational princi-
ple applied to intrashell configuration-interaction (CI)
states of two-electron atoms and ions. The results depend
on a screening constant which is given analytically in
terms of correlation quantum numbers. This permits the
estimate of energy positions of doubly excited states for
two-electron atoms and ions without any fitting or empiri-
cal parameters. Section III examines the validity of the
derived expression by comparison with elaborate numeri-
cal results. We discuss implications of this comparison
and the relationship of our model with those of Read and
Rau. Section IV outlines applications of the formula to
estimating energy levels of intershell states, multielectron
intrashell states, and predicting irregularities in decay
width. Section V concludes the paper.

II. DERIVATION OF THE DOUBLE RYDBERG
FORMULA FOR TWO-ELECTRON ATOMS

The double Rydberg formula is a compact representa-
tion of the energy levels of a particular type of atomic
states in which a pair of electrons are located at about
equal distances from the nucleus. In the case of two-
electron atoms or ions presented here, the formula in-
volves a mutual screening constant which pertains to the
geometry of the two electrons. This constant can be de-
rived in a simple variational manner using intrashell CI
states. We rewrite the two-electron Hamiltonian as

1, Z* 1, Z*
H=|——Vi— ——V;—
l 2 r + 2 z ry
vz | L (1
r r T2

where Z* is an effective charge, and Z is the total charge
of the nucleus. The wave functions are assumed to be a
linear superposition of products of Coulomb wave func-
tions corresponding to a screen charge Z*. For intrashell
states, we limit the superposition to products of hydrogen-
ic wave functions with principal quantum number N, then
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In the CI approach, one would then evaluate the 1/r, in-
tegral within the subspace and then diagonalize the total
Hamiltonian. Here we take advantage of the fact that the
two electrons, being at about equal distances away from
the core, have the expectation value of 1/r,, which is pro-

portional to {1/r). By using the following approxima-
tion,

1 1 zZ*
1/r,)={~ =£_(20),
{1/7ra) <r>(2—2<cos9]2>)‘/2 N

where the proportionality constant 2o is related to the
geometry of the electron pair through the average value of
cosf;,. This approximation leads to the following expres-
sion for (H ):

(1 2
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Z*

CH)=— 2

(2Z—-Z*-20) . (4)

Setting the variation of (H ) with respect to Z* equal to
zero yields

2
(H):EN_N:—(ZN—Z") (au.), (5)
which expresses the energy of each doubly excited state in
terms of a screening parameter 0. The screening parame-
ter is related to the average of cosf;, for that state.
Theoretical studies of doubly excited states have shown
that the angular correlation as characterized by ( cosf,),
differs greatly for different states.!'! A convenient ap-
proximate expression for { cosf,,) has been given by Her-
rick et al.'* using the SO(4) group theory from which

In (6), K and T are angular correlation quantum numbers
whose range is'>

T=0,1,2,..., min(L,N —1),
K=(N-1-T),(N-3-T),...,—(N—1-T);

@)

T =0 is not allowed if the parity of the state is (—1)F *!,

Note how the correlation quantum numbers are exploit-
ed in the new classification scheme. A doubly excited
state is denoted by ,(K,T)# 2 +1L™ where A indicates the
type of radial correlation and is closely related to the spin
and angular degrees of freedom,

A=m(—-1*T, K>L —N
=0, K<L —N.

(8)

For intrashell states, » =N and A =+ 1. Here N is the
principal quantum number of the inner electron and »
that of the outer electron.

Returning now to the screening constant, a less accurate
but “simpler” expression for { cosf;,) has also been de-
rived by Herrick!* using O(4) theory, namely

3K

N (9)

(cosf,) = —

It is valid when K is positive and not differing too much
from N —1. Equation (9) leads to

1
(2)

= 10
7 T 20243K/N)7 (10)

An alternative expression for o can be derived using
different approximations for 1/r;;. Crance and
Armstrong!® have given a group theoretical expression for
r2, and then they approximate {1/r,) by 1/(r3;)'/2
Using their result, one obtains, for example, for 'S¢ states
the result

24+ %[mv +K —1(N+K +1)+7T2—6L (L

/2 - (6)

54 (N—K—1)+—=
4N?

For n(N —1,0)% 'S¢ intrashell states, o'" and o' ap-
proach 0.224 and 0.162, respectively, as N approaches in-
finity. These limiting values are smaller than the value
0.25 obtained by Read® and Rau.'® The major difference
is due to the fact that both Eqgs. (6) and (11) were derived
by including only intrashell states and assuming that the
equality of r; and r, holds in the sense of average, while
both Read and Rau obtain the results under the more
strict condition that r; =r,.

III. VALIDITY OF THE FORMULA
AND DISCUSSIONS

A basic assumption of the present model is that the two
electrons are limited to the same average distance from
the nucleus, i.e., the radial degrees of freedom are restrict-
ed. From the CI point of view, this is equivalent to as-
suming that all the hydrogenic orbitals used in the CI ex-
pansion has n =N. In an earlier analysis,'® it has been
shown that the approximate wave functions obtained
from the SO(4) theory is adequate for states with K >0,
particularly for K =N —1 states. It fails for negative K
since for K <0, the two electrons are on the same side of
the nucleus and they could maintain such an angular
correlation pattern only by forcing r,=4#, in order to min-
imize the Coulomb repulsion between them. Since intra-
shell states with negative K do not satisfy the assumptions
used in the present derivation, it is not desirable to use Eq.
(5) for K <O states.

To check the validity of the simple formula, we show in
Table I energy levels of several selected intrashell doubly
excited states for N =3 and 4. The states are designated
using the new classification scheme. Each corresponds to
the lowest state of the given N, L, S, and 7. The energies
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TABLE 1. Comparison of energy levels of doubly excited
states of heliumlike ions using the simple formula Eq. (5) with
the results from the CI calculations by Bachau (Ref. 15) (shown
in parentheses). All the energies are given in electron volts and
are measured from the double ionization threshold. The screen-
ing o was calculated using Eq. (10) for 'S° and 'P° and (6) for

'De.

Charge Energies (eV)

3(2,0)F IS¢ 4(3,0)F1s°

Z =5 68.21 ( 69.09) 38.48 ( 39.05)

6 99.90 (101.00) 56.37 ( 57.06)

7 137.75 (138.99) 77.56 ( 78.45)

8 181.59 (182.99) 102.34 (103.23)

9 231.47 (233.05) 130.43 (131.42)

10 287.41 (289.16) 161.91 (163.04)
S(LDF pe A2,1)F P

Z =5 67.11 ( 67.48) 38.09 ( 38.47)

7 136.18 (136.62) 77.09 ( 77.60)

9 229.43 (229.92) 129.70 (130.34)
3(2,0)5 'D* 4(3,0)f 'D*

Z =5 67.72 ( 68.24) 37.95 ( 38.83)

7 137.05 (137.74) 76.89 ( 78.12)

9 230.56 (231.42) 129.43 (130.99)

calculated using (5) are compared with those calculated by
Bachau!” using the CI method. Typically the difference is
about 1 eV or less. This accuracy is adequate for the pur-
pose of identifying the states observed in energy-gain
spectroscopy. Note that our results are in principle (and
in practice) inferior to those obtained by an intrashell CI
calculation. The advantage is its ready availability for es-
timating energy levels when there are no theoretical calcu-
lations.

The relative error in applying Eq. (5) to doubly excited
states of Z=1 and 2 atoms are larger. For the lowest 'S°
states of H™ in the N=4, 5, and 6 manifolds, we com-
pared (5) with the results of Ho!® and of Ho and Calla-
way.!® While the absolute errors are only 0.102, 0.070,
and 0.048 eV for N =4, 5, and 6, respectively, the relative
errors are about 9.5% in all three cases. These errors are
inherent in the assumptions of SO(4) theory used in
deducing ( cosf;,). Alternatively, we can evaluate the
screening constant o from Bachau’s CI energy levels by
inverting Eq. (5). We found that the so-determined nu-
merical o is almost constant along an isoelectronic se-
quence. For 3(2,0)F 'S¢ and 4(3,0)7 'S¢, the fitted o are
0.219 and 0.207, respectively. These are to be compared
with 0.250 and 0.243, respectively, obtained from Eq. (5).
The insensitivity of o to Z supports its geometrical origin.
In principle, one can obtain a better estimate of energy
levels by treating o as a fitting parameter or introducing a
quantum defect d to the denominator. This has to be
done for each N, K, and T and it can be a subject of fu-
ture study.

In the rest of this section, we discuss the relevance of
the present model to the double Rydberg models of Read®
and Rau.!® Both authors invoke the arguments based on

the hyperspherical coordinates. In terms of the hyperra-
dius R and the hyperangle @ where R =(r?+r%)"/? and
a=arctan(r, /r,), the potential surface V can be expand-
ed near the saddle point (¢ =45° and 6,,=180°) as

V=2o/R—Z(a—7/4)?/R+Z4(0,,—m)*/R , (12)

where ZO=2\/§(Z-’%), and Z, and Z; are two other
constants irrelevant to the present discussion. Read®
rewrites (12) as

Z, 2V2AZ —+) (Z—3) (Z—%)

— R = 3 = T Th , (13)

upon using r,=r,=R /V2. Combining with the kinetic
energy term of each electron, the local Hamiltonian is
equivalent to the sum of two noninteracting electrons,
each experiencing an effective charge (Z —0.25). The in-
trashell energy levels are given by

(Z—+)?

N2
quite similar in form to Eq. (5). In fact they are identical
for the state ;(2,0);" 'S¢ for which o is exactly 0.25.

Rau” took a somewhat different approach. By retain-
ing only the first term of the potential in (12), he solved
the Coulomb problem in the six-dimensional space. An
energy expression similar to the Coulomb energy level
with effective charge Z —0.25 was derived. To account
for the fact that the potential away from the saddle point
is not given by —Z,/R, Rau introduced two additional
parameters S, and S, to arrive at an empirical expression

4Z—+-5,)7

Ey=———7F—— (au), (15)
(V+7—S2)2

E(N,N)=— (a.u.), (14)

for the energies of doubly excited states. The parameters
S and S, are obtained by fitting Eq. (15) to theoretical or
experimental levels. An equation similar to (15) was also
derived by Feagin and Macek?! by analyzing the asymp-
totic wave function of doubly excited states near the
double-electron escape limit. They have an analytical ex-
pression for S differing from Rau’s empirical one.

We note that although the energy-level expression de-
rived here is similar to those given by Read, Rau, Feagin
and Macek, the underlying physical models are actually
very different. Our derivation is an approximation to the
intrashell CI calculation, thus the formula is expected to
be more appropriate for low-energy states and for positive
ions than for neutral atoms or negative ions. Though lim-
ited to such cases, our formula reveals specific dependence
of o on angular correlation quantum numbers K and T.
Assessing the validity of other models lies outside the
scope of this paper.

IV. FURTHER APPLICATIONS

A. Energy levels for intershell states
of two-electron systems

Doubly excited states with the same L, S, 7, K, T, A,
and N belong to the same channel and »n labels the states
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of this channel. For neutral atoms and positive ions, n
ranges from N to infinity if 4 = + 1 and these states form
a Rydberg series, the intrashell state n =N being the first
member. According to the Ritz-Rydberg formula, the en-
ergy levels for the whole series can be expressed as
2
E(n,N)zEN—L”Z (
2(n —d)

where Ey =—Z2/2N? is the Nth hydrogenic energy level
representing the channel’s ionization limit and d is the
usual quantum defect. Using the energy expression (5) for
E(N,N), the quantum defect for the whole series can be
calculated by assuming that d is independent of n. We
compare in Table II several energy levels of heliumlike bo-
ron calculated using this prescription with the CI results
of Lipsky et al.?*> They agree to within a few tenths of an
eV. Note, however, that this prescription applies only to
intershell states for which 4 =+1. Although the quan-
tum defect is weakly energy dependent even for the series
with 4 = —1 or 0, no simple extrapolation of d is possible
because they do not have intrashell states. On the other
hand, the A =—1 and A =0 series are rarely produced in
single-photon absorption? or in electron-impact excita-
tion.?* It is not known experimentally whether these
states are produced efficiently in ion-atom collisions.

a.u.), (16)

B. Doubly excited states of multielectron atoms

Doubly excited states of multielectron atoms consist of
an electron pair outside a compact open-shell core. By de-
fining the energy of the electron pair with respect to the
open-shell core, the energy level of the pair can be general-
ized from Eq. (5) to

(Z—0)?
(N —p)?

where u is the quantum defect representing the penetra-
tion of an outer electron into the core region. Alternative-
ly we can use p as a fitting parameter® in which case Eq.
(17) can be interpreted as a semiempirical expression. To
see the accuracy of such a fitting procedure, we examine
the energy levels of He™ observed by Buckman et al.*
They denoted the observed doubly excited series as
1sNs?2S¢ with N =3—8. According to our notation, they
should be designated as 1sy(N —1,0)} 'S°. Deducing the

EN,N:_ (a.u.) , (17)

TABLE II. Energy levels of some intershell states of helium-
like Boron (Z =5) calculated using Egs. (5) and (16) and the re-
sults are compared with those by Lipskey et al. (Ref. 22). Ener-
gies are measured in electron volts from the double ionization
threshold.
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quantum defect pu from Eq. (17) for the lowest state
N =3, we can evaluate the energy levels for other N’s and
the results are compared with the measurement of Buck-
man et al.* in Table ITII. (The reader should consult Ref.
8 for the determination of u for doubly excited states out-
side a core whose energy is split by spin-orbit and spin-
spin interactions.) The agreement between the measured
values and those calculated from (17) is good.

The simple formula (17) allows us to organize the ener-
gy levels of doubly excited states along the isoelectronic
sequence. We have already seen that the screening con-
stant o is independent of charge Z. The results shown in
the previous paragraph indicate that p is nearly indepen-
dent of N. We expect that u depends only weakly on Z
and can be expressed as

a b 4
—Z+22+Z3, (18)
where a, b, and c are treated as fitting parameters. Note
that we treat o to have the known dependence on K, T,
and N as given by Eq. (6), while p is expected to vary
from one series to another and obtained from fitting. To
check how well this procedure works, we first calculate
the energy level of the 1s55(2,0)7 2S¢ state for Z =10 us-
ing the MCHF program of Froese-Fisher.?* The calculated
energy is then fitted to Eq. (17) to extract the quantum de-
fect u. From the calculated p, we evaluate the binding
energy of 1s5(4,0)F 2S° state using (17). The result is
-85.05 eV which is to be compared with -85.10 eV calcu-
lated from the MCHF program. We have also calculated
the energies of 155(2,0);5 25 for Z =18 and 36 to extract
the quantum defects. These quantum defects for Z =10,
18, and 36 are then fitted to Eq. (18) to obtain the follow-
ing constants: a =0.4214, b =0.08515, and ¢ =1.3085.
Using these constants, the energy levels of
1sy(N —1,0)% 2S¢ for any Z can be calculated. We have
tested this method for a few Z, and the results are quite
satisfactory. Our main point here is to illustrate a method
of organizing energy levels of doubly excited states along
the isoelectronic sequence in the future. For example, one
can generalize the method of organizing energy levels to

u

TABLE III. Energy levels of He™2S° resonances measured
from the two-electron ionization limit at 7 =24.588 eV. Experi-
mental energy of Buckman et al. (Ref. 4) for N =3 is used to
derive a quantum defect. Equation (16) is then used to calculate
the energies for all the higher N states. The quotes around the
N =38 entry signify that Buckman et al. quote it only tentative-
ly. Numbers in parentheses in the second column indicates the
uncertainty in last digits. The energies are given in electron vo-
Its.

State Eqgs. (5) and (16) Ref. 22 N Experiment Eq. (16)
42,007 1s° 53.91 54.19 3 2.138(5) 2.138
5(2,0)5 1s° 47.76 47.96 4 1.145(5) 1.154
4(2,0)F 'D* 53.72 53.72 5 0.728(5) 0.723
5(2,0)F 'D® 47.66 47.72 6 0.500(10) 0.493
(L0 1pe 53.50 53.17 7 0.372(10) 0.358
s(1,1)5 1p° 47.57 47.39 8 “0.282” 0.272
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doubly excited states with the 1s2'S¢ 1s522s2S¢ and
152252 18€ cores.

C. Irregularities in decay width

In general, the energy levels of a Rydberg series
2(K,T)# 25 +1L 7 lie above the (N — 1)th ionization thresh-
old. They autoionize predominantly?® to the continuum
channel with N'=N —1, and K'=K — 1 with all the oth-
er quantum numbers fixed. From the energy of the N'th
threshold, one can calculate the energy of the autoionized
electron. One would like to know if the energy of the au-
toionized electron and its decay width follow some simple
Z dependence for ready interpolation or extrapolation
along the isoelectronic sequence.

This simple expectation fails since the energy level of
the doubly excited state y(K,T)% 2°*'L™ may lie below
the (N —1)th hydrogenic threshold, and energetically it
can decay predominantly to the next lower threshold; the
(N —2)th threshold. This crossover occurs along the
isoelectronic sequence, and when this happens the decay
width becomes suddenly narrow and the autoionized elec-
tron has relatively large kinetic energy. Indeed we can
find evidence of this sudden change in the calculation of
Bachau!” already. Using Eq. (5) we find that for
~(N —1,0)7 'S¢ states, the crossover occurs at N =18 for
Z=1, at N=5 for Z=2—4, and at N =4 for
Z =5-—-20. [The N =18 for Z =1 is definitely an overes-
timate. Using the empirical screening constant for H™ in
Eq. (5) would predict that the crossover occurs at N =10.]

The above irregularity of decay widths along the
isoelectronic sequence can also occur with increasing N
for a given Z. Except for Bachau’s, neither experimental
nor theoretical information about such dependence is
available so far because observations requires high resolu-
tion in energy.

V. CONCLUSION

In summary, we have shown that the approximate ener-
gy levels of doubly excited states can be calculated using a
simple formula. It was derived on the basis of the new
classification scheme of doubly excited states. For two-
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electron atoms, there is no empirical parameter in the for-
mula and the results are shown to be in reasonable agree-
ment with ab initio calculations. The formula was de-
rived for intrashell states under the assumption of strong
sangular correlations of the two electrons. They are
equivalent to the results one would get in a limited ap-
proximate CI calculation. For the doubly excited states of
multielectron atoms, we show that the energy levels can
be organized by introducing a single quantum defect pa-
rameter which can be determined empirically or through
ab initio calculation of a single state for each given dou-
ble Rydberg series. We have also discussed how to esti-
mate the energy levels of intershell states of a series if the
first member of the series is an intrashell state. We con-
clude by noting that the formula presented here is for sim-
ple estimates of energy levels. More accurate results can
be obtained by more sophisticated fitting procedure
and/or ab initio calculations. Due to the irregularity, the
calculations of decay width must be performed for each
individual doubly excited state. The formula presented
here is especially useful for estimating what doubly excit-
ed states are likely to be populated in the collision of mul-
tiply charged ions with atoms.
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