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Abstract. The atomic-orbital expansion method within the close-coupling scheme is exten- 
ded to two-electron collision systems. Coupling matrix elements are evaluated with full 
account of electron exchange and translation. Results are presented for one-electron capture 
in the (quasi-)two-electron systems 0 6 + + H e  and C6++He in the energy range 0.5- 
40 keV amu-' where a one-electron potential model description fails. Calculated total 
transfer cross sections agree very well with experiment. A comparison of subshell cross 
sections indicates about the same degree of convergence of the calculations as has been 
reached in analogous calculations for (quasi-)one-electron systems of comparable com- 
plexity. 

1. Introduction 

The description of electron transfer in (quasi-) one-electron ion-atom collision systems 
has improved much in accuracy, reliability and effectiveness in recent years. For 
collision energies that allow a classical treatment of the nuclear motion, the time- 
dependent Schrodinger equation for the electronic motion has been solved exactly 
within various preselected spaces of basis functions (close-coupling method), and the 
results compare favourably with experimental data over generally two orders of 
magnitude in collision energy. In fact, the theoretical determination of total transfer 
cross sections has been reduced to mere routine work with existing methods and codes 
while the calculation of small partial transfer cross sections still requires careful 
consideration of the transfer process and of competing physical channelst. One of 
the more impressive demonstrations of the convergence between theory and experiment 
in this field is the recent experimental confirmation (Ciric et al 1985) of predicted 
(Fritsch and Lin 1984a) partial transfer cross sections in C4++ H and 06+ + H collisions, 
as well as the close agreement of measured total capture and line emission cross 
sections in C6', N 7 + + H  and Os++H collisions (Dijkkamp et a1 1985a, Meyer et a1 
1985,1986) with results of close-coupling studies (Green et a1 1982, Shipsey et al 1983, 
Fritsch and Lin 1984b). All these works also verify the long standing assertion that 
for distant collisions the concepts of both molecular-orbital (MO) and atomic-orbital 

t The latest controversy about electron transfer in H++ Na collisions (cf the discussion by Fritsch (1984)) 
seems to be settled now with the realisation that calculations done for this system in the early 1980s are 
insufficient or numerically incorrect (Allan 1986, Flower 1985, Kimura 1985, Shingal et al 1985, 1986). 
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(AO) expansion schemes are equally appropriate for describing electron transfer over 
a wide range of collision energies (Lin 1978), leaving the choice of basis functions 
within the close-coupling method a matter of numerical convenience. Modifications 
of the AO expansion method have been introduced for its use in close or slow collisions 
(Fritsch and Lin 1982), and have been applied to a number of cases, see e.g. the report 
by Fritsch and Lin (1984~).  Other less frequently used expansion schemes are also 
referred to there. 

In this paper we discuss the extension of the AO expansion scheme within the 
close-coupling method to (quasi-) two-electron systems, and present calculated cross 
sections for one-electron transfer in 0 6 + + H e  and C6++He collisions in the energy 
range 0.5-40 keV amu-'. There have already been pioneering investigations of charge 
transfer within two-electron versions of the AO expansion scheme. As early as 1965, 
Green et a1 set up and solved an atomic two-state expansion model for the H++He  
system. Some ten years later, Winter and Lin (1974) applied a many-state expansion 
to the same system, using the approximation that exchange coupling terms can be 
neglected. The formulation and numerical techniques which are presented here are 
distinguished from those used in earlier works in that they are quite general and allow 
for an easy, straightforward inclusion of channels with high quantum numbers n and 
1 as they occur in highly ionised collision systems, essentially by upgrading existing 
one-electron AO expansion codes. Furthermore, our formulation avoids any approxi- 
mation in the evaluation of coupling matrix elements as they have been justified in 
very recent work on He++Li collisions at higher energies (Bransden et a1 1984). 

The collision systems 06+ + He and C6+ + He have been chosen as first applications 
of the formalism in this paper since they are at the same time complex and simple 
enough for our purpose: (i) the electron correlation in the He atom is important enough 
to make a one-electron potential approach inadequate, but also weak enough to allow 
for a representation of the ground-state wavefunction by a simple optimised product 
wavefunction; (ii) double-electron capture channels are not important; (iii) the 
dominant electronic process is one-electron capture into the n = 3 projectile orbitals 
at large internuclear separations where the AO expansion model is known to be 
particularly well applicable. Finally, recent experimental data (06++ He) and theoreti- 
cal results (C"+He) allow for a comparative discussion not only of the calculated 
total transfer cross sections but even of the more sensitive subshell cross sections. 

Other models have been devised which also include explicitly the interelectronic 
interaction in the description of two-electron collision systems since the early 1980s. 
Hare1 and Salin (1980) have included this interaction between one-electron molecular 
orbitals but have neglected the effect of orbital translation. Kimura et a1 (1983) have 
included the translation effect, and we will make a comparison with the results of their 
MO formulation for C6++ He later on. The time-dependent Hartree-Fock approach 
has been applied (Stich et a1 1983, Sandhya Devi and Garcia 1984) to systems which 
develop close to their molecular ground state. That method is probably less attractive 
for the systems considered in this work. Other more specialised model calculations 
which usually neglect either the electron translation or the exchange effect are numerous 
and are not further discussed here. 

In the following section, we summarise the atomic-orbital expansion model in its 
form for two-electron systems. A third section deals with the numerical calculation 
of matrix elements in the AO expansion model. Section 4 contains the application to 
the collision systems 0 6 + + H e  and C6++He. In § 5 we conclude with an assessment 
of the results and of their implication for future studies. 
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2. Theory: the atomic-orbital expansion scheme with two-electron configurations 

For one-electron systems, the atomic-orbital expansion method has been frequently 
described in the literature (see, e.g., McDowell and Coleman 1970). Here we give in 
short form its extension to (quasi-)two-electron systems. Atomic units are used 
throughout this paper if not explicitly stated otherwise. 

Let us assume that the two atomic collision centres A and B move on some classical 
trajectory with velocities uA and uB, respectively. Let us furthermore assume that the 
electronic motion during the collision is sufficiently well represented by a superposition 
of a finite number of two-electron configurations @,( r l ,  r2)  in which, for fixed channel 
number n, each electron moves along with either centre A or B ( rj denotes the coordinate 
of electron j ,  j = 1,2, in the centre-of-mass system). We then start from the decomposi- 
tion of the time-dependent two-electron wavefunction q ( r l ,  r,,  t )  into this set of 
configurations @,, 

WJ.1, rz, t ) = C  afl(t)@fl(r1, rz)xn(t)  
n 

with time-dependent occupation amplitudes a,( t )  and a phase factor 

( 2 )  

which contains the asymptotic electronic binding energy in configuration n, 

and a classical kinetic energy term T , ( t )  associated with the motion of the electrons 
with their respective centre. Then if the two electrons of configuration n are attached 
to different centres, 

In equation ( l ) ,  spin functions have been suppressed for simplicity. For the collision 
systems considered in this paper, the spin degrees of freedom have been included by 
imposing proper symmetry conditions on the configurations @,. 

In equation (3), He, consists of the Hamiltonians Ho( j )  of electron j ,  j = 1, 2 ,  with 
respect to both centres A and B, and the interelectronic interaction V I Z ,  

Each basis configuration a,, is either of one-centre type or of two-centre type with 
appropriate translational factors attached to them. In the simplest case they are 
symmetrised products of travelling one-electron orbitals, e.g. if the two electrons are 
attached to different centres, 

@ " ( r l ,  r2) = P*[4Jl f l (47  exP(iuA r1)4Jzfl(r3 exp(iuF3 4 1  (7) 
where &,(rjC) is the ith ( i  = 1,2) function in configuration @,, describing electron j 
with its coordinate r; measured from the atomic centre c ( c  = A, B), and the operator 
P' is the Pauli (anti-)symmetrisation operator according to spin triplet (singlet) 
conditions. We note that the configuration functions @ , ( r l ,  r z )  still depend on time 
through the movement of the collision centres, i.e. through the travelling electronic 
coordinates rf and, for curved-line trajectories, through the velocities U, of the 
centre c. 
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In full analogy to the well known close-coupling method for one-electron problems, 
the decomposition (1) is inserted into the time-dependent Schrodinger equation for 
two electrons, leading to coupled differential equations for the occupation amplitudes 
a,( t ) ,  c Nnkak  = 1 M n k a k  (8) 

N n k  (@&n I @ ' k X k )  (9) 

M n k  = ( @ n x n I  Hel-i a / a r j @ ' k X k ) *  (10) 

k k 

with overlap matrix elements 

and potential coupling matrix elements 

Starting from the two-electron Hamiltonian He, for a given two-electron system, 
or from a model two-electron Hamiltonian for a quasi-two-electron system, the matrix 
elements (9) and (10) are calculated on a time mesh along the internuclear trajectory, 
using methods to be discussed in the next section. With these matrix elements, the 
coupled equations (8) are solved numerically with a variable step size Runge-Kutta 
procedure, beginning from the initial condition at large negative times where only one 
configuration CPi is occupied, up to large positive times where the amplitudes a,(t) 
stabilise and where they represent probability amplitudes for the occupation of some 
final physical states as well as pseudostates. The physical interpretation of an(  t + *CO), 

of course, depends on a meaningful choice of configurations @, and favours a basis set 
{an} which is orthogonal in the limit r + *oo (for small times t, the configurations 0, 
of two-centre type are not even normalised). As for the interpretation of the population 
of pseudostates as a measure of ionisation events, we refer the reader to works by 
Fritsch and Lin (1982, 1983) and by Mukoyama er a1 (1985). 

From the absolute squares of probability amplitlpdes at t + CO, partial inelastic cross 
sections are formed as usual by integrating over the' impact parameter plane, and total 
transfer cross sections are calculated by summing the partial cross sections of all 
transfer channels n which are included in the basis set. 

3. Calculation of matrix elements 

For the determination of the time-dependent occupation amplitudes a, ( t ) ,  equation 
(8), it is essential to calculate the matrix elements (9) and (10) in an efficient way. As 
far as these are composed of matrix elements of one-particle operators between products 
of travelling atomic orbitals, equation (7), they can clearly be calculated with the 
methods used in AO expansion studies for one-electron systems. In particular, the 
overlap matrix (9) and the one-electron operator part of the coupling matrix (10) can 
be easily calculated on a curved-line trajectory by combining equations (3)-(5) in the 
work of Fritsch (1982) and by using well known calculational techniques which go 
back to early studies with AO expansions (McCarroll 1961). In this section, we 
concentrate on the evaluation of matrix elements of the two-electron operator V 1 2 ,  
equation (6), between basis configurations a,, i.e. on the evaluation of expressions like 

z n k ( f )  = d3rl d3r2 W l n k ( r l r )  V12WZnk(r'2f) (11) 

a i n k ( r i t )  = 4 ? n ( r i ) 4 i k ( r i )  exp[i(uB- u A ) r i l  

I 
in which the atomic product functions Wink are of the form 

(12) 
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if Q i n  (aik) moves with centre A (B), and suitably modified otherwise. In equation 
(12), the atomic product functions w depend only on the coordinate of electron i, ri, 
as well as on time or internuclear separation R. If the electrons in all single-electron 
orbitals 4i, ( j  = n, k, i = 1,2) were positioned at the same centre or would not travel 
the correlation term ( 1  1) could be calculated with a number of efficient methods known 
in atomic- or molecular-structure physics. For the collision case for which the transla- 
tional factor part in equation (12) is non-trivial, we have chosen to generalise 
expressions given by Mehler and Riidenberg (1969), which seemed to be well suited 
for implementation into an existing AO expansion code for one-electron systems. 
Starting from equation ( 1  l ) ,  we introduce the Neumann expansion for V12 in elliptical 
coordinates t,, 7i, +i of the electrons i, i = 1, 2. Then, after some elementary algebra 
(Mehler and Riidenberg 1969) we arrive at the following expression for the basic 
integral I n k  : 

m 

I n k ( t )  = (4/R) [ dxf;m(xf)f?m(xt) (13 )  
Im 1 

where 

i = l , 2  

and 

In equation (15), the real spherical harmonics glm, 

are used, and P;"(u) denotes the associated Legendre function of the first kind. 
As f o o ( x  = CO, t )  is simply the overlap integral between one-electron atomic-orbital 

functions including translational factors, it is clear that flm(x = CO, t), equation (14), 
can be easily evaluated with the same methods and with similar computational invest- 
ment as those matrix elements which are used in calculations for one-electron problems. 
In particular, one or even two of the integrations in equation (15 )  may be solved in 
closed form while the 5 integration in equation (14) is solved numerically on a 5 mesh 
such that f;m(x, t )  is also available for all x 2 1. Accordingly, for the evaluation of 
I n k ,  equation (13), only one integral needs to be solved in addition to those to which 
one is accustomed in one-electron problems while the sum over 0 s 1 < 00 and - 1 s m s 1 
(which might appear to be as awkward as another two integrations) can usually be 
cut off after a few terms for a given requirement of accuracy for Ink.  In this way, i.e. 
if I n k  and the full matrix element, equation (lo), are evaluated to an accuracy of four 
decimal places, I,,, can be kept safely below 12 and in most cases well below that 
figure. The only exceptions are constituted by certain couplings at large separations 
R, i.e. when the translational factors cancel (e.g. (4?s(rl)4~s(rz)l  Vl2\4k(r1)+Ys(r2))). 
Those cases would require very large values of I,,,,, in the sum of equation (13). 
Therefore, they are evaluated separately with the customary multipole expansion of 
V12 in spherical coordinates where the range of 1 values is limited by triangular relations 
of I with the respective orbital angular momenta of atomic orbitals at either collision 
centre. 
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The expressions given in this and in the preceding section reduce to expressions 
given by Green et a1 (1965) if used in conjunction with their model description of the 
H++ He system. Before moving on to the more involved systems considered here we 
have ascertained that in actual numerical calculations the results of Green et a1 are 
recovered. Furthermore, some of the calculated matrix elements could be compared 
with results which were computed independently by Sabourin (1985). 

4. Model study for the collision systems 0 6 + + H e  and C6++He 

In the following, we apply the theory as outlined above to the (quasi-)two-electron 
systems 06'+He and C6++He and compare with experimental data and with the 
results of a previous study within the molecular-orbital (MO) model. These systems 
are particularly attractive for a first test of the two-electron atomic-orbital formalism 
as they primarily involve distant collisions in which a number of 1 orbitals in higher 
n shells ( n  = 3,4)  are populated. Thus Ao-type expansions can be expected to show 
their particular strength here. Furthermore, in the energy region studied here, the 
correlation between the two electrons in the ground state of He makes a one-electron 
potential model for these systems less reliable. Indeed, it will be shown below that 
results from a one-electron AO description with a simple He potential from the literature 
do not agree with experiment. 

4.1. Formulation of the model 

The collision systems 06++ He and C6++ He are expected to behave very similarly in 
the intermediate energy range. The two electrons in the K shell of oxygen can be 
safely considered as inert in collisions. From a discussion based on the energy diagrams 
it is clear that one-electron capture into the projectile n = 3 shell is the dominant 
process (see the work by Kimura and Olson (1984) for C6+ + He), and this is confirmed 
by experiment for 0 6 + + H e  (Dijkkamp et a1 1985b). The different cores of the 06' 
and C6' projectiles will at best affect the total transfer cross sections at low energies 
but may well influence the 1 distribution of transfer at all energies under consideration. 
The 06+ core is represented by the potential 

(17) 
6 2  
r r  

vo6+(r) = - - - - exp( -2cur ) (1+2ar+2cu2r2)  

with (Y = 8.4, which is the summed potential of the nucleus and of two electrons in 
scaled 1s orbitals. As final states for both collision systems we have taken the antisym- 
metrised product states )nplp)llsHe+) where the projectile states lnplp) include all np = 3, 
4 orbitals and the 2s orbital. For 06+ projectiles these are constructed by diagonalising 
the 06+ Hamiltonian within the space of the 2s and the np=3,  4 hydrogenic orbitals 
with effective charges 2, = 6 (the 2s orbital has been taken in order to improve the 3s 
and 4s energies in the diagonalisation process). With the choice of potential (17), the 
deviation of the model 3s(4s)06' energy from the Hartree-Fock values (Lindgaard 
and Nielsen 1977) is thus 0.0053 (0.0080) au, i.e. small compared with the binding 
energy gain in the collision of about 1.33 au for n = 3. These deviations become even 
smaller with increasing 1 > 0. By starting with the same hydrogenic basis set for both 
collision systems, of course, we have to calculate the matrix elements of VI ,  only once 
for both collision systems. 
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The AO basis consists of the 17 two-electron configurations given above as well as 
a representation of the He ground state by an antisymmetrised product of hydrogenic 
1s states with effective charges 2.183 and 1.188. The total electronic binding energy 
from that representation is -2.8757 au and thus only 0.028 au above the experimental 
value. The representation of the He ground state could be improved by adding further 
components into a configuration wavefunction, e.g. the remaining deviation of the 
binding energy from experiment could be halved by adding just one appropriate 
(2p(Z,)2p(Z2)) component, but this was not done in the present collision study. In 
another restriction of this study, it is assumed in the basis that in the energy range 
under consideration, 0.5-40 keV amu-l, the target is always left in its ground state after 
collision. Furthermore, double capture channels and molecular corrections are not 
included. Certainly the representation of relevant adiabatic quasimolecular states by 
the chosen basis could be improved by adding tighter-bound atomic orbitals, cf works 
by Fritsch and Lin (1982, 1984c), but this was not done here in order to keep the 
model description as simple as possible. 

Straight-line internuclear trajectories are employed in the calculations above 
1 keVamu-‘ impact energy. At and below that energy Coulomb trajectories are 
employed, associated with two moving point-like nuclear charges of 2, = 6 and 2, = 1. 
While the choice of 2, is not considered to be critical, this might not be true for 2,. 
The choice Z,= 1 is of course only correct in the outgoing transfer channels at large 
separations. However, it represents a compromise between other possible more extreme 
choices of 0 or 2. 

4.2. Results and discussion 

Calculated total and partial transfer cross sections in 06++ He and C6+ + He collisions 
are listed in tables 1 and 2, respectively. As expected, the projectile n = 3 shells are 
populated dominantly in both collision systems. At higher energies, however, transfer 
becomes less selective and transfer into n = 4 orbitals gains strength. At energies above 
2 keV amu-I, the cross sections for population of the n = 3 and 4 shells, and hence 
also the total transfer cross sections, are about the same in both systems while, below 
that energy, the cross sections for the C6+ + He system are distinctly smaller than those 
for the 06++ He system. Not surprisingly, the 1-subshell cross sections depend some- 
what more strongly on details of the collision system, except at the highest energy 
point where they seem to tend towards their statistical relative ratio. 

Table 2 also contains, in the last column, total transfer cross sections in C6+ + He 
collisions from a one-electron potential model. In this model, which is analogous to 
the ones used by us earlier, cf e.g. Fritsch and Lin (1984a), the one-electron initial 
and final configurations are the Is He and the n = 3, 4 C5+ orbitals, and the model 
potential representing the He core is taken from the study by Opradolce et a1 (1983). 
Although, in the latter paper it was concluded that the potential model description 
gives a satisfactory transfer cross section in the special case of Ar6++ He collisions, it 
turns out to be quite unsatisfactory for the case C6’+He (as well as for 06++He) ,  
particularly at low energy, both with respect to the two-electron description and to 
experiment (see below). It is only at higher energies, i.e. when the collision velocity 
is larger than the electronic orbital velocity, that the ‘spectator’ electron may be assumed 
as frozen in its initial orbital during the collision. Of course, with a reduced claim on 
the accuracy of results, the one-electron model may seem acceptable at the higher 
energies of the present study, too. 
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Table 1. Calculated total transfer cross sections U,,,, partial transfer cross sections U, for 
population of the projectile principal shell n, and I-subshell partial cross sections U,, in 
0 6 + + H e  collisions at impact energies E. Cross sections are in 10-16cm2, energies in 
keV amu-'. 

0.5 8.5 3 8.32 0.37 2.94 5.00 
4 0.15 0.03 0.04 0.06 0.03 

1 12.4 3 12.0 1.33 5.41 5.27 
4 0.40 0.03 0.10 0.21 0.06 

2 13.6 3 12.8 2.06 6.68 4.11 
4 0.80 0.08 0.14 0.41 0.17 

4 14.7 3 13.4 2.81 6.83 3.78 
4 1.26 0.09 0.18 0.45 0.54 

8 14.4 3 12.6 3.78 4.47 4.36 
4 1.76 0.11 0.23 0.54 0.89 

15 15.8 3 11.3 2.64 3.85 4.82 
4 4.55 0.20 0.41 1.56 2.38 

25 15.6 3 9.93 1.35 2.92 5.66 
4 5.66 0.09 0.62 1.14 3.81 

40 13.6 3 8.65 0.74 2.28 5.62 
4 4.93 0.12 0.51 0.97 3.34 

Table 2. Calculated total transfer cross sections utot, partial transfer cross sections U, for 
population of the projectile principal shell n, and [-subshell partial cross sections un, in 
C6*+He collisions at impact energies E, from this two-electron study. The last column 
(ule) shows results from a study based on a one-electron potential model. Cross sections 
are are in cm', energies in keV amu-'. 

0.5 4.2 3 4.0 0.80 1.87 1.35 15.3 
4 0.17 0.02 0.02 0.07 0.06 

1 9.3 3 8.8 1.81 3.59 3.61 
4 0.52 0.07 0.19 0.20 0.06 

2 12.4 3 11.4 3.07 4.40 3.97 23.5 
4 0.92 0.13 0.23 0.38 0.18 

4 14.0 3 12.6 3.09 5.10 4.43 
4 1.38 0.08 0.22 0.52 0.56 

8 15.8 3 13.9 2.74 6.01 5.12 
4 1.96 0.05 0.28 0.58 1.05 

15 17.3 3 12.9 1.58 5.35 5.93 
4 4.39 0.13 0.38 1.28 2.61 

25 15.8 3 10.6 0.91 3.61 6.04 18.2 
4 5.28 0.09 0.50 1.10 3.59 

40 13.6 3 8.85 0.51 2.55 5.79 16.5 
4 4.70 0.09 0.44 0.96 3.21 
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In figure 1, calculated partial and total transfer cross sections for the 0 6 + + H e  
system are compared with experimental data from the optical measurements by 
Dijkkamp er al (1985b) and with the charge state analysis measurements by Iwai et 
al (1982). The calculated total transfer cross sections are in excellent agreement with 
both sets of experimental data. For the n = 3 partial transfer cross sections, there are 
some quantitative discrepancies between experimental data (estimated uncertainties 
are of the order of 30%) and the calculation, although the more general energy 
dependences of those partial cross sections agree well. Particularly, the measured 3d 
population at low energies is larger than the corresponding result from this work. 
From the figure, the discrepancy between the published measured and calculated n = 4 
partial transfer cross sections seems to be most serious. However, the optical measure- 
ments of the corresponding lines are less certain than assumed at the time of the 
publication of the experimental paper (Dijkkamp 1985). Actually, from the molecular 
energy diagram (see the one for C6++He collisions (Kimura and Olson 1984)) we 
expect that the n = 4 partial cross sections should drop rapidly with decreasing energy. 

In figure 2, calculated total and partial transfer cross sections for the C6++He 
system are compared with experimental data by Iwai er al (1982) and with the results 
of a theoretical study based on the molecular orbital (MO) picture (Kimura and Olson 
1984). The calculated total transfer cross sections of this work are in rather striking 
agreement with the measurements at low energies where they do depend on particular 
features of the system, cf figure 1 for the 0 6 + + H e  system. The partial transfer cross 
sections for the n = 3 shell from the two calculations agree only qualitatively. At higher 
energies, the MO results are probably less reliable since they are derived without the 

I I 1 I I I I 

O"+ He I Total i 

Impact energy  ( k e V  amu-') 

Figure 1. Energy dependence of total and partial one-electron capture cross sections in 
06+ + He collisions. Full curves link results of this work; full diamonds, squares, triangles 
and circles denote calculated partial cross sections for transfer into 3s, 3p, 3d and all n = 4 
projectile states, respectively. Open symbols linked by broken curves denote corresponding 
results measured by Dijkkamp er a1 (1985b). Measured total transfer cross sections are 
by Iwai et al (1982) ( x )  and by Dijkkamp et a/ (1985b) (+). 



2692 W Fritsch and C D Lin 

I I I I I I 1 I 1 
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Cs'+ He 1 

/ 
3s i 

n - 4  
I I I I I I I I 

0 1  1.0 10 
Impact energy i keV amu-' 1 

Figure 2. Total and partial one-electron capture cross sections in C6++ He collisions. Full 
curves and symbols denote results of this work as explained in the caption of figure 1, 
broken curves the results of the MO study by Kimura and Olson (1984). Measured total 
transfer cross sections are by Iwai et a1 (1982) (x) .  

n = 4 capture channels and since, in the MO study, matrix elements are calculated only 
to first order in the collision velocity. At low energies, the partial cross sections from 
the MO study combine to an  almost flat total transfer cross section which seems to be 
less in agreement with experimental evidence and with expectation, but which certainly 
is not excluded by the data. 

The striking difference in magnitude between total transfer cross sections in low- 
energy 0 6 + + H e  and  C6++He  collisions, as borne out in this investigation and  in 
experiment, makes an  explanation by physical arguments desirable. Unfortunately, 
such arguments are not easy to find without a detailed discussion. In test calculations 
at 0.5 keV amu-' with straight-line trajectories the difference in question recurs, hence 
it is not due  to the different trajectories chosen for the two systems. However, it is 
known from a theoretical study for the (quasi-)one-electron systems X6++ H (Larsen 
and Taulbjerg 1984) that an  understanding of the core effect requires a discussion of 
wavefunctions or  matrix elements and not only of energies. We do not pursue this 
discussion for the systems under investigation here, as it would be tedious and would 
involve much repetition of arguments put forward by Larsen and Taulbjerg. We note 
that for the system X6++ H a pronounced effect of the electronic core in slow collisions, 
similar in magnitude to the effect pointed out here, has been documented in experiments 
over a large range of projectile atomic numbers X (Crandall et a1 1980). 

5. Conclusions 

In  this work we present a n  extension of the atomic-orbital expansion method to 
two-electron systems. The extension of the formalism is very straightforward, and  the 
evaluation of the interelectronic matrix element requires one integration in addition 
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to those integrations which are performed in the case of one-electron systems. The 
additional integration causes an increase by a factor of about ten in the computing 
time required for studies in the two-electron formulation. However, for collision 
systems with two (almost equivalent) electrons outside a presumably frozen core, a 
one-electron model in the intermediate energy region is in general unsatisfactory, and 
this is clearly seen for the example of 0 6 + + H e  and C6++He collisions in this work. 
In turn, one-electron transfer cross sections from the two-electron formalism are in 
good agreement with experiment for both systems. Remaining discrepancies with 
experiment, i.e. discrepancies between partial transfer cross sections, may be partly 
due to limitations of the model calculations but also due to problems in the difficult 
experiment, as indicated above. The limitations which seemed acceptable in this study 
are primarily (i) the representation of the He ground state by a simple antisymmetrised 
product wavefunction, (ii) the exclusion of excited He or He+ configurations, (iii) the 
exclusion of double-capture channels, and (iv) the exclusion of molecular binding 
effects in this study. At energies below some 0.5 keV amu-' limitations (i) and (iv) as 
well as trajectory effects would make results less reliable, and so would limitation (ii) 
as well as higher transfer channels beyond the n = 3 and 4 channels at energies greatly 
above 25 keV amu-'. In the intermediate energy regime, however, it seems that the 
two-electron formalism represents the actual physical situation as well as the one- 
electron AO formalism does for analogous one-electron systems, cf the works on C4++ H 
by Fritsch and Lin (1984a) and by Ciric et a1 (1985). 

There are certainly large challenges ahead for the two-electron AO expansion 
method, i.e. when any of the limitations of this study cannot be reasonably maintained. 
Highly correlated target atoms like H- will require the inclusion of configuration 
interaction wavefunctions, more symmetric systems may involve significant molecular 
binding effects at low energy, and in some systems there will be important double- 
capture or even doubly-excited channels or other correlated processes. The present 
study may be taken as an indication that the AO expansion model provides techniques 
of addressing all these problems. Only future investigations will show what precision 
can be achieved in practice for complex two-electron problems. After completion of 
this paper, a two-state AO expansion study on H(2s) formation in H ( l s ) + H ( l s )  
collisions appeared (McLaughlin and Bell 1985). The formalism developed in that 
paper is very close to that used here. Their results demonstrate the power of a consistent 
AO expansion description at low to intermediate energies if compared with other 
descriptions which imply additional approximations. 
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