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Abstract. By adopting a frozen-core approximation with the two valence electrons treated 
in suitably chosen model potentials, the correlations of doubly-excited states of Li- and 
Be are studied in hyperspherical coordinates in the adiabatic approximation. The charac- 
teristics of correlation patterns for these states are found to be similar to those for the 
corresponding states of H- and He except for the gradual loss of the strong angular 
correlation for Li- and Be at large hyper-radius. Adiabatic potential curves and eigen- 
energies for the doubly-excited states lying below the n = 2  and n = 3 limits of the 
one-electron ions are calculated and compared with results from the configuration interac- 
tion method using the same model potential to assess the validity of the adiabatic 
approximation. It is concluded that for certain {L, S, T }  states the adiabatic approximation 
is quite adequate but for others, e.g., 'Po, couplings between neighbouring channels are 
important. 

1. Introduction 

Hyperspherical coordinates have been used in recent years to study correlations 
between two excited electrons in H- and He (Lin 1982a, b, and references therein; 
Fano 1983). Many interesting properties of doubly-excited states have been revealed 
in these studies. While these prototype systems provide characteristics of doubly- 
excited states in two-electron systems, it is important to examine whether these 
characteristics also exist in doubly-excited states of many-electron systems. 

The simplest many-electron systems of this type are alkali negative ions and 
alkaline-earth atoms. In these systems, the electron pair of interest are attracted to 
a spherically symmetric ionic core, when both electrons of the pair remain outside 
the core radius. Under this restriction, the electron pair experiences primarily an 
attractive Coulomb potential plus a weaker polarisation potential. On the other hand, 
penetration of either electron within the core exposes the electron to a stronger field 
and to substantial exchange of energy and angular momentum with the core electrons. 
These effects are minimal for two-valence-electron systems where the core can be 
regarded as 'frozen'. Therefore, these systems can be treated in hyperspherical 
coordinates similar to H- and He except that the electron-nucleus interaction is 
replaced by a non-Coulombic local potential V ( r ) .  

A previous investigation by Greene (1981) along these lines chose V ( r )  to be the 
Herman-Skillman (1963) potential. It is known that this potential does not represent 
the valence-electron-core interaction accurately. Thus some of his quantitative results 
are inferior to the conventional state-of-the-art calculations and the results could be 
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easily misinterpreted as the failure of the approach based upon hyperspherical coordin- 
ates. In this paper we adopt a more accurate model potential to represent the 
two-valence-electron systems, Li- and Be. We will show that the qualitative con- 
clusions of Greene (1981) are still valid while the quantitative results are significantly 
improved. We also propose a more effective method of calculating adiabatic potential 
curves by generalising the analytical channel functions developed for H- and He (Lin 
198 1) to these model two-electron systems. 

With this modification our object here is to solve the model two-electron systems 
in hyperspherical coordinates in the adiabatic approximation similar to the earlier 
treatments for H- and He. The non-Coulomb character of the model potential V ( r )  
breaks the degeneracy of the limiting values of the potential curves, U,(R + 00). Lack 
of this degeneracy constricts the development of strong angular correlation at large 
hyper-radius R because the exchange of angular momentum between the two electrons 
requires energy transfer-in contrast to H- and He where the exchange requires no 
energy transfer owing to the degeneracy of H ( n l )  and He+(nl) (n  3 2 )  spectra (Lin 
1982b). In the region of intermediate hyperspherical radius R, energy exchange 
between the electron pair is large and a strong angular correlation can be easily 
developed. In this region, the correlation patterns for the pair of valence electrons 
in Li- and Be are expected to behave like the pair of electrons in H- and He. Our 
goal here is to elucidate the evolution of the two electrons from the correlated regime 
at small R to the uncorrelated regime at large R. 

In D 2, we summarise the model potential approach of Dalgarno, Laughlin, Victor 
and co-workers. Calculations of adiabatic potential curves in hyperspherical coordin- 
ates are described in § 3 and the results of applications to Li- and Be are presented 
in 0 4. We use atomic units unless otherwise noted. 

2. Model potentials for two-valence-electron systems 

The model potentials used here follow the work of Laughlin and Victor (1972). 
Consider an (N  + 2)- electron system having two valence electrons outside a closed- 
shell polarisable core. Assuming that the core electrons follow the motion of the 
valence electrons instantaneously and neglect the exchange between valence and core 
electrons, the total wavefunction for the system may be written in the adiabatic 
approximation 

+ = m; r1, r2)+v(r1, r2) (1) 

where the core wavefunction +c depends parametrically on the coordinates of the two 
valence electrons rl  and r2,  and r labels, collectively, the position vectors of the N 
core electrons. Allowing rl and r2 to vary and assuming that both r l  and r2 are larger 
than the radius of each core electron, one obtains the equation for the two valence 
electrons, 

(-lv:-3;+ V ( r , ) +  V(r2)+ V12)dv(rl, r2) =Evdv(r l ,  r2). (2) 
The valence-electron-core interaction takes the form 

where VFF is the core potential computed from the Hartree-Fock ground-state 
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orbitals, f f d  (a,) is the dipole (quadrupole) polarisability and 

W,, = 1 - exp(-x“) 

is the cut-off function, with cut-off radius ro. The last term U(r ;  a )  is predominantly 
a short-range correction term which depends on a set of parameters. Following 
Laughlin and Victor (1972), 

U(r ;  a )  = ( ao+a l r  +a2?) exp(-kr)+(ab + a i r )  exp(-k’r). (4) 
These short-range parameters as well as the cut-off radius ro are determined so that 
the spectrum of the one-electron equation 

c-$v’+ V(r)Mi(r) = E,+j(r) ( 5 )  
reproduces the experimental singly-excited states for the one-valence-electron system. 

The electron-electron interactions, Vt2 are taken to be 

In this work the model potential parameters for Li are taken from Victor and Laughlin 
(1972), and for Be+ from Laughlin and Victor (1972). 

3. Hyperspherical coordinates approach 

Equation (2) has been solved for many two-valence electron systems by the conven- 
tional configuration interaction method (cI). A similar model potential approach (but 
with a different parametrisation) has also beeen used by Moore and Norcross (1974) 
where equation (2) is solved by the close-coupling expansion. In this article we solve 
equation (2) in hyperspherical coordinates in the adiabatic approximation. 

The two-valence-electron wavefunctions Y v  (rl, r2) are expressed in hyperspherical 
coordinates in the adiabatic approximation as 

Yv(rl, r2) = (R ’” sin a cos a ) - I F :  (R )a, (R ; Q) (7) 
for the n th state in channel w.  The channel function @, satisfies 

and the eigen-energies E: for the n th state of channel iu. are obtained in the adiabatic 
approximation from the radial equation 

is the diagonal non-adiabatic term. 
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For real two-electron problems, equation (8) has been solved using various 
methods: (i) by direct numerical integration (Macek 1968, Greene 1981); (ii) by 
diagonalisation using hyperspherical harmonics as basis functions (Lin 1974, Klar and 
Klar 1978); (iii) by finite-difference method (Lin 1975) and (iv) most efficiently, in 
terms of linear combinations of hyperspherical harmonics and analytical channel 
functions (Lin 1981). The last method has the advantage of numerical stability and 
convergence since basis functions suitable for small R and for large R are both 
included. Recent works on H- and He in hyperspherical coordinates have shown the 
usefulness of this approach. 

To generalise the method of analytical channel functions developed earlier for H- 
and He (Lin 1981) to the present situation, we solve the one-electron orbital q5q(r) 
from ( 5 )  in terms of linear combinations of Slater-type orbitals 

The one-electron binding energies obtained from the model potentials of Victor 
and Laughlin (1972) for Li and of Laughlin and Victor (1972) for Bet, as shown in 
table 1, are in good agreement with the experimental energies. 

Table 1. Comparison of the eigenvalues of the model potentials with experimental binding 
energies of Li and Be+ (given in rydbergs). 

Li Bei 

Theory Experimentala Theory Experimental' 
~ 

2s 
3s 
4s 
2P 
3P 
4P 
3d 
4d 
4f 

-0.398 75 
-0.148 90 
-0.077 19 
-0.260 65 
-0.114 55 
-0.063 93 
-0.111 24 
-0.062 54 
-0.062 50 

-0.396 32 
-0.148 38 
-0.077 24 
-0.260 50 
-0.11448 
-0.063 95 
-0.111 22 
-0.062 55 
-0.062 51 

-1.3394 
-0.5347 
-0.2855 
-1.0494 
-0.4589 
-0.2549 
-0.4447 
-0.2497 
-0.2498 

-1.3382 
-0.5342 
-0.2860 
-1.0472 
-0.4588 
-0.2560 
-0.4446 
-0.2500 
-0.2498 

"From Moore (1949). 

Following Lin (1981), the analytical channel functions within each [11Z2] pair are 

(a) For 11 = 12 = I, assuming that the r-weighted radial wavefunction of ( 5 )  is 
generalised as follows. 

F~ ( r )  = C a 9 r ni  exp(-pir) 
i 

the a-dependent part of the analytical channel function at each R is obtained by 
replacing r by R sin a cos a to give 

q5r~,(R sin a COS a )  = N ( R )  1 aP(R sin a cos a)"' exp(-PiR sin a cos a )  
i 

and the analytical channel function is q5Lf,(R sin (Y cos a)YffLM(rl, r2) where 
YrllzL~ ( P I ,  Pz )  is the coupled angular momentum wavefunction of the two electrons. 
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The normalisation in (13) is chosen such that 

Iq&(R sin a cos * ) I 2  da = 1. 
Jo=j2 

(b) For l l # I 2  where Zl is the angular momentum quantum number of the inner 
electron, the analytical channel function is 

where A is the proper (anti-) symmetrisation operator. 
In terms of these analytical channel functions and hyperspherical harmonics, 

equation (8) can be easily solved accurately using a small basis set (<15). The resulting 
potential curves U,(R)  are used to calculate the binding energies (see equation (9)) 
as well as for the classification of doubly-excited states in Li- and Be. The behaviour 
of @, (R ; a) over 0 at each R serves to illustrate the evolution of correlation patterns 
of two excited electrons in Li+ or Be2+ core. 

4. Results and discussion 

4.1. Correlations of doubly-excited states of Be 

4.1.1. Correlation patterns for 1,3Se states. The two adiabatic potential curves for lV3Se 

states of Be converging to the 2s and 2p states of Be+ are shown in figure 1. They 
are labelled in terms of quantum numbers of the inner electron and the orbital angular 
momentum quantum number of the outer electron in the asymptotic limit (R + CO). 

These conventional designations do not reflect the strong radial and angular correla- 
tions of the two electrons in the small-R region. 

The shape of the potential curves shown in figure 1 are very similar to the 
corresponding ones in the doubly-excited states of He (Macek 1968, Lin 1974). 

Figure 1. Adiabatic potential curves of ( a )  Be ' S e  and ( b )  Be 2Se channels converging to 
Be+(2s) and Be+(2p) limits. The channels are labelled using the quantum numbers 
according to the independent-electron approximation. 
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However, there is one major difference: because of the degeneracy of 2s and 2p 
states in He+, there is strong angular coupling between ~ S E S  ' S  and 2pep 'S in He 
even at large hyper-radius R, while the lack of degeneracy between the 2s and 2p 
states of Be' results in the absence of such angular mixing at large R. This difference 
also results in some variation in the correlation patterns of doubly-excited states in 
Be as compared with those in He. 

To illustrate the correlation patterns, we show in figure 2 the surface charge density 
plots l@,+(R; a,  012)/' on the (a,  012) plane for the 2sss ' S e  and 2pep ' S e  channels of 
Be at four different values of R. These plots are to be compared with the corresponding 
ones in H-, as shown in figure 6 of Lin (1982a). These graphs are shown at different 
orientations for the two channels to exhibit greater detail. We notice that the graphs 
at R = 2 and R = 6 show the characteristics of doubly-excited states belonging to these 
two channels, namely, that the correlation pattern for the lower channel exhibits a 
strong peak near a = 45" and 01' = 180", and with a large charge concentration in the 
O I L  > 90" region while the correlation pattern for the upper channel exhibits a pronoun- 
ced nodal line near - 90" and with a relatively large charge concentration in the 
region of 012 < 90". In this respect, doubly-excited states in Be have similar correlation 
patterns as in the corresponding states in He and H-. Within a given channel, the 
charge density near a =45" drops as R increases with the inner electron remaining 

(01 
Be ZSES 'Se 

Figure 2. Plots of surface charge densities of ( a )  Be 2ses ' S e  and ( b )  2pep ' S e  channels 
on the 012 plane at four different values of R. Notice that the orientations are different 
for the two channels. 
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near the core and the outer one moving out. This is reflected by the depression in 
the surface charge density plots around the a = 45" line (see figure 2 and also figure 
6 of Lin (1982a)) at large R. However, there is an important difference occurring at 
large R. In H-, as well as in He, the depression near a = 45" at increasing values of 
R is not accompanied by any significant change in the angular correlation pattern. 
This was clearly illustrated in figures 6 of Lin (1982a) as well as in figure 5 of Lin 
(1982b) where the 'average' (el2) was found to be essentially constant for each 
channel. We notice that the angular correlation pattern for the 2se s ' S e  channel 
changes gradually as R increases. Instead of concentrating only in the 012 > 90" region, 
the charge distribution spreads out to the whole 012 region at large R. At R = 14, 
we notice that there is no pronounced angular correlation between the two electrons- 
as characterised by the 2ss s ' S e  designation. On the other hand, by referring to figure 
l ( a ) ,  we found that such a lack of angular correlations occurs only at R values far 
away from where the potential well lies. Therefore, we can expect states localised 
near the potential well to show strong angular correlations, while higher Rydberg 
states, which are localised far away from the potential well, show less overall angular 
correlation. This behaviour is well known from the conventional configuration interac- 
tion (CI) studies where the ground state of Be was shown to have large CI coefficients 
involving configurations like 2p2 ' S e  and 3d2 'Se, but such mixing is very small for the 
states 2sns ' S  (n 3 3). The variation of angular correlation is less conspicuous for the 
2pep ' S e  channel because there is already some angular correlation implied by the 
2psp ' S e  designation (where the charge density varies as cos2 012), 

The angular correlation patterns do not depend significantly on the spin quantum 
numbers. In figure 3 we show the surface charge density plots for the 2sss 3Se and 
2psp 3Se channels of Be. Except for the fixed nodal line along a = 45", there is little 
difference between the corresponding plots. A similar behaviour in H- has been 
illustrated earlier (Lin 1982a). 

We summarise this subsection by stating that the correlation patterns of ~ S E S  ' S e  
and 2psp ' S e  states are similar to those in the corresponding channels in He and H- 
at small hyper-radius, but are similar to those predicted by the independent-electron 
approximation at large hyper-radius. These states thus exhibit properties characteristic 
of doubly-excited states at small hyper-radius and of independent electrons at large 
hyper-radius. 

4.1.2. Eigen-energies for 1,3Se stutes. The energies of the few lowest states for 2se s lg3Se 
and 2pep lV3Se channels of Be calculated in the adiabatic approximation using the 
potential curves shown in figure 1 are tabulated in table 2, together with the results 
from the configuration-mixing calculations and with experimental results. The energies 
are given in rydbergs with respect to the Be2+ threshold. Also in the table are the 
quantum defects for the states indicated with respect to their respective thresholds. 
In general, we notice that the binding energies for 2sns 133Se states predicted using 
the present adiabatic approximation are slightly above those calculated using the 
configuration interaction (CI) method, whereas the reverse is true for 2pn p 1,3Se series. 
The experimental binding energies for 2sns 1*3Se states are lower than both predictions. 
We also notice that the quantum defects computed from the present adiabatic 
approximation deteriorate along the 2sn s ' S e  series. 

The above results are consistent with the earlier conclusions for H- and He, that 
the adiabatic approximation becomes less valid with an increasing degree of excitation. 
The inclusion of non-adiabatic couplings between 2sns ' S e  and 2pnp ' S e  channels is 
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i b l  

Be Zpsp 'Se 

n 
n12 / 2  

Figure 3. Plots of surface charge densities of ( a )  Be 2SES 3Se and ( b )  2pEp 3Se channels 
on the OI2 plane at four different values of R. 

Table 2. Eigen-energies and quantum defects of 1,3Se doubly-excited states of Be. 

Eigen-energies Quantum defects 

State 
Hyper- Model 
spherical potentiala 

2s2 lSe 

2pz ISe 

2s3s ' S e  
2s4s ' S e  

2p3p ' S e  
2s3s 3Se 
2s4s 3Se 
2p3p 3Se 

-2.0171 -2.0185 
-1.5149 -1.5236 
- 1.4239 -1.4284 
-1.3196 -1.3102 
-1.1557 
-1.5447 -1.5478 
-1.4327 -1.4352 
-1.1932 

Experi- 
mentalb 

-2.0238 
-1.5255 
-1.4292 

-1.5492 
- 1.4360 

Hyper- 
spherical 

Model Experi- 
potentiala mentalb 

0.785 
0.613 
0.560 
0.076 
0.067 
0.793 
0.726 
0.363 

0.786 0.792 
0.670 0.684 
0.648 0.685 
0.041 

0.809 0.823 
0.769 0.802 

a Laughlin and Victor (1972). 
Moore (1949). 

expected to improve the numerical results significantly. Notice that the energies are 
too high for 2sns ' S e  series but too low for 2pnp ' S e  series (as compared with the CI 
results). The introduction of coupling, according to the general behaviour of 'spectral 
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repulsion', will bring both series in better agreement with other more accurate 
calculations and with experiments. Notice that the non-adiabatic effects for the 
2sn s lS3Se series are expected to increase with higher, values of n. 

The 2s' ' S e  binding energy predicted within the present adiabatic approximation 
is 0.677 Ryd, as compared with the value of 0.679 Ryd computed by the CI method 
using the same model potential. Both are in reasonably good agreement with the 
experimental value, 0.685 Ryd. The present result is a significant improvement over 
the earlier value 0.740 Ryd given by Greene. In this work, Greene used a less accurate 
potential for the model two-electron system and the diagonal non-adiabatic coupling 
term W,, (see equation (11)) was not included in his adiabatic potential. We thus 
point out that an adequate binding energy for Be 2s' ' S e  can still be obtained within 
the adiabatic approximation if a realistic model potential is used. 

4.1.3. '"Po States. The potential curves for the 133P0 states of Be converging to the 
2s and 2p limits of Be+ are shown in figure 4. There is a strong avoided crossing 
between the 2 s ~ p  and 2pes curves for 'Po at R - 5.0. This behaviour is different from 
the corresponding + and - curves in He where a diabatic crossing occurs at R - 7.5. 
This difference originates from the lack of strong angular coupling between the 2sep 
and 2 p ~ s  channels in the large-R region owing to the non-degeneracy of the Be'(2s) 
and Be+(2p) states. The strong non-adiabatic coupling suggests that the breakdown 
of the adiabatic approximation will be quite severe for 'Po states. Such non-adiabatic 
coupling has been considered by Greene (1981) recently. 

-1 .o 
2 p c d  

s I\ 
$ -1.5 
I 

+ 
2 - 2 5  

-3 .0 
2 4 6 8 10 2 4 6 8 10 

R (ou l  

Figure 4. Adiabatic potential curves of ( a )  Be 'Po and ( b )  Be 3P0 channels converging 
to the Be+(2s) and Be+(2p) limits. Notice the strong avoided crossing between the 2sep 
I O  P and 2pes 'Po channels at R - 5 au. 

In table 3 we present the eigen-energies and quantum defects of the low-lying 
states of each 1,3P0 channel using the potential curves shown in figure 4. For 'PO, we 
notice that the quantum defects for 2snp 'Po states differ from the corresponding ones 
calculated in the CI method using the same model potential by as much as 0.2. 
Although these adiabatic values are slightly better than those obtained by Greene, 
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Table 3. Eigen-energies and quantum defects of 1.3P0 excited states of Be. 

~~ 

Eigen-energies Quantum defects 

Hyper- Model Experi- Hyper- Model Experi- 
State spherical potentiala mentalb spherical potentiala mentalb Greene' 

- 

2s2p lPO 
2s3p 'Po 
2s4p 'Po 
2p3s 'Po 

2p3d 'Po 
2p4d 'Po 

2s3p 3P0 
2s4p 3P0 
2p3s 3P0 
2p4s 3P0 
2p3d 3P0 
2p4d 3P0 

2pcs IP0 

2s2p 3P0 

-1.6122 
- 1.453 1 
-1.4024 
-1.2528 
-1.1423 
-1.1522 
-1.1076 
- 1.8 143 
-1.4724 
-1.4090 
-1.2371 
- 1.1377 
-1.1532 
-1.1080 

-1.6210 
- 1.4670 
-1.4108 
-1.2321 
-1.1325 
-1.1490 
-1.1027 
-1.8143 
-1.4840 
-1.4135 

-1.6359 
-1.4753 
-1.4120 
-1.2314 
-1.1384 
-1.1468 
-1.1019 
-1.8235 
-1.4869 
-1.4149 

0.085 0.115 0.167 -0.021 
0.034 0.201 0.299 0.007 
0.016 0.257 0.318 0.005 
0.783 0.661 0.669 
0.719 0.531 0.688 
0.881 0.831 0.799 
0.855 0.668 0.638 
0.549 0.549 0.564 
0.258 0.370 0.407 
0.210 0.326 0.390 
0.692 
0.635 

-0.104 
-0.131 

~ ~~~ ~~ 

a Laughlin and Victor (1972). 
Moore (1949). 
' Greene (1981). 

this large discrepancy indicates the importance of incorporating non-adiabatic coup- 
lings in this case. Notice that the energies for 2pns 'Po states are lower than those 
calculated in the CI method. The introduction of non-adiabatic couplings with the 
2snp 'P channel is expected to push the 2pns 'Po energies up in accordance with the 
principle of spectral repulsion, thus resulting in a better agreement with the CI results. 

Table 3 also gives the eigen-energies and quantum defects €or the 3P0 states. 
Although there is no discernable avoided crossing between 2ssp and 2pes curves in 
figure 4 ( b ) ,  the non-adiabatic effect is not very small for the higher states. While the 
2s2p 3Po energy calculated in the adiabatic approximation is in agreement with the 
CI result, the quantum defects for 2s3p and 2s4p are less accurate. 

4.2. Doubly-excited states o f  L i -  

4.2.1. Potential curves converging to 2s and Zp limits of Li. The potential curves for 
','Se and 1v3P0 states of Li- converging to the 2s and 2p limits of Li are shown in 
figure 5. Except for the 2sss ' S e  and 2sep 3Po curves, all the other curves are mostly 
repulsive. It turns out that the attractive 2ssp3P0 curve is not strong enough to 
support any bound state. The 2ss s ' S e  curve does support one bound state, correspond- 
ing to the 2s' ' S e  ground state of Li-. The binding energy calculated under the 
adiabatic approximation is -0.585eV, as compared with -0.594eV from the CI 
method and with the experimental value of -0.596 eV. We also notice that the strong 
avoided crossing for 'Po curves in Be in figure 4 is also evident in the 'Po curves for 
Li-. 

The potential curves shown in figure 5 are to be compared with the corresponding 
ones in H- (Lin 1976). Because of the non-degeneracy in the Li(2s) and Li(2p) limits, 
there is a lack of strong angular correlation at large R. The lack of such an angular 
correlation at large R results in the absence of additional diffuse bound states in Li. 
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4.2.2. Doubly-excited states of Li- below the Li (n =3) limits. To examine the qualita- 
tive behaviour of higher doubly-excited states in Li- and to compare with the corre- 
sponding states in H- studied earlier (Lin 1982b), we show in figure 6 the higher 1,3Se 
potential curves of Li-. These curves are to be compared with figure 1 of Lin (1982b). 
Except for the detailed behaviour in the asymptotic region, the shape of each curve 
and the diabatic crossings (between 3 d ~  d ' S e  and ~ S E S  ' S e  in Li- and between 3c and 
4a in H-) are also very similar. This implies that the properties of doubly-excited 
states of H-- studied earlier are expected to be true for the doubly-excited states of 
Li- except for the gradual loss of angular correlations at large R.  The lowest three 
lS3P0 curves converging to the Li (n  = 3) thresholds are shown in figure 7. These 
curves are similar to the corresponding curves for H- shown in figures 2(a), 2(b) of 
Lin (1982b). 

Within the adiabatic approximation, the eigen-energies calculated from the attrac- 
tive potential curves in figures 6 and 7 are given in table 4. They are compared with 
the CI calculations of Stewart et a1 (1974) using the same model potential. Except 
for 3s3p 'PO, the calculated energies are in reasonable harmony. The large discrepancy 
for 3s3p 'Po is an indication that the diabatic crossing assumed in figure 7(a)  is not 
entirely satisfactory. To improve the accuracy, it is desirable to take into account the 
coupling between the 3ss p and 3 p ~  s channels. 

5. Conclusions 

In this paper we have illustrated the study of doubly-excited states of two-valence- 
electron systems in hyperspherical coordinates. It is shown that accurate results 



734 

-015- 

- 
U z 
a - 
g - 0 2 0  

CD Lin 

3s - - 

(0) LI' 'se 

I I I I I ( 1  

-0 20 

-0.20 
10 20 30 40 10 20 30 40 

R (aul 

Figure 7. Potential curves for (a) Li- 'Po and ( b )  Li- 3P0 channels converging to Li(n = 3)  
limits. 
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Table 4. Eigen-energies (in rydbergs) of autoionising states in Li-. 

State Hyperspherical Model potentiala 

3s2 'se 
3p2 'se 
3s4s 'se 
3p4p 'se 
3s3p 'PO 
3s3p 3P0 
4s2 I s e  

4p2 ' s e  

-0.1667 -0.1688 
-0.1194 -0.1244 
-0.1484 -0.1486 
-0.1184 -0.1148 
-0.1342 -0.1188 
-0.1557 -0.1574 
-0.0913 - 
-0.0719 - 

a Stewart et a1 (1974), 

comparable with those obtained in H- and He can be obtained for these systems, 
with a few exceptions, within the adiabatic approximation if the model two-electron 
Hamiltonian is chosen accurately. The adoption of hyperspherical coordinates allows 
us to study the correlation patterns of doubly-excited states in many-electron systems. 
We have shown that the basic correlation patterns in these systems are similar to the 
corresponding states in H- and He except for the loss of strong angular correlations 
at large hyperspherical radius. (The large angular correlation for doubly-excited states 
in H- and He at large R is due to the degeneracy of the H(n) and He'(n) cores when 
n 3 2 . )  

We have also illustrated the situations where the adiabatic approximation fails. 
Our conclusions here are identical to those of the early work of Greene (1981). To 
obtain reasonable 'first-order' results for 'Po states, for example, it is necessary to 
couple at least the 2sep and 2pes channels. The strong coupling between these two 
channels explains the large autoionisation rates for the 2pns 'Po states (Greene 1981, 
Fano 1983). 

The implementation of analytical channel functions for calculations in hyper- 
spherical coordinates simplifies the numerical work significantly. It is expected that 
these types of approaches can be further explored to study not only the qualitative 
aspects of spectroscopy, but also provide more accurate quantitative results. 
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