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Doubly excited states of H™ lying below the hydrogenic N =3 and 4 thresholds are in-
vestigated in hyperspherical coordinates. Adiabatic potential curves are calculated using
the recently developed analytical channel functions and approximate resonance energies,
and their classifications are described. It is found that the present classification differs
from the recent work by Gailitis for P° and 'D* states. Angular correlations for doubly
excited states below H(N =2) and H(N =3) thresholds are also investigated for 3S°,
13pe and D symmetries. States belonging to different channels are found to have a

high degree of different angular correlations.

I. INTRODUCTION

Doubly excited states of H™ lying below the
N =2 threshold of H have been the subject of con-
siderable theoretical and experimental investiga-
tions in the 60’s and early 70’s. Many elaborate
theoretical calculations based upon close-coupling
approximations,! Feshbach projection techniques,’
and complex coordinate rotations’ have been used
to calculate the positions and widths of these mul-
tichannel resonances. For low-lying states of each
symmetry, the theoretical predictions are in good
general agreement with resonances measured in
electron-hydrogen atom scattering data.* In recent
years, as the calculational tools have improved,
more attention has been drawn to doubly excited
states lying below the higher N (N > 3) thresholds.
Furthermore, recent series of photodetachment stu-
dies® of H™ in a relativistic H~ beam have im-
proved the energy resolution of these resonances
considerably, thus providing a new challenge to the
understanding and prediction of these states.

Earlier studies have shown that in resonance
states of H™, there exist certain underlying approx-
imate symmetries. The group theoretical method®
and the method of solving for two-electron wave
functions in hyperspherical coordinates’~!! have
been employed to understand these “hidden” ap-
proximate symmetries. While these two methods
are probably not sufficiently developed to predict
resonance parameters as accurately as other ap-
proaches, they do provide information about the
nature of the correlated motion of two excited elec-
trons directly. In particular, a recent development
in the hyperspherical coordinates approach reveals
that the underlying dynamical symmetries are re-
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lated to the different eigenmodes of the motion of
two correlated electrons.'?

The hyperspherical coordinate method replaces
the electron radial coordinates (r;,7,) by hypers-
pherical variables R =(r? +r3)'/? and
a=arctan(r,/r;). The variable R measures the
“size” of the negative ion. By solving the two-
electron Schrodinger equation at fixed values of
the coordinate R with R treated as a parameter,
the resulting energy eigenvalues U,(R) are then the
“potential curves,” where p corresponds to dif-
ferent “channels.” Mathematically this is analo-
gous to the Born-Oppenheimer approach in molec-
ular physics. The eigenenergies of doubly excited
states of H™ for each channel u are then the “vi-
brational energies” calculated from solving a one-
dimensional radial equation using the potential
curves U,(R). This method of calculating approx
imate eigenenergies of doubly excited states in
hyperspherical coordinates has been applied previ-
ously by several workers to two-electron sys-
tems,”~!! to two valence-electron systems,'>!*
to doubly excited states in three-electron sys-
tems.'>!® The method has also been applied to
calculate elastic scattering phase shifts.'’ ! Vari-
ous numerical techniques have been developed to
calculate the potential curves U »(R), but most of
these methods are inappropriate for high-lying po-
tential curves. In a recent article,?° the author re-
ported the newly developed analytical channel
functions in hyperspherical coordinates. These
new functions simplify the calculation of higher
potential curves U,(R). Since the properties of
doubly excited states of H™ lying below the
H(N =3) thresholds have never been sytematically
investigated using that approach, this article de-

and
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scribes its application to these high-lying doubly
excited states.

Section II describes the methods used in the cal-
culation of the potential curves. The resulting po-
tential curves U, (R) lying below the H(N =3) lim-
its are shown in Sec. III for 3s¢, -3p° 1.3pe and
1.3P¢ symmetries, and those lying below the
H(N =4) limits are shown for >S¢ symmetries.
The approximate energy eigenvalues and radial

wave functions of autodetaching states are then
calculated from the attractive potential curves and
are compared with other theoretical calculations in
Sec. IV. From the potential curves, it is shown
that our classifications of some of these states
differ from the recent work of Gailitis.?! In Sec.
V, angular correlations of doubly excited states are
investigated.

II. THEORETICAL METHODS

In the adiabatic approximation, the wave function of the nth excited state in channel u is expressed as

Yu(R,Q)=R ~*"*(sina cosa) ~'Fj,(R)D,(R;Q) ,

(1)

where the adiabatic channel function satisfies the partial differential equation
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In Egs. (1) and (2), Q={ a,7},7; }, where #; =(6;4;) denotes the usual spherical angles and 1; is the orbital
angular momentum operator for electron i, 8;, is the angle subtended by the two electrons to the nucleus,
and Z =1 is the charge of the nucleus. For low-lying doubly excited states, it is convenient to expand

D,(R;Q) as

q>“(R ;)= 2 alq,IZ(R)¢1112q(R ;Q),
Ll

where the basis function is defined by

1,1,¢(R;Q)=[gf 1, (R;0)% 1 1,1m(F1,72)] -

4

In (4),  is the proper symmetrization or antisymmetrization operator (the spin function is not explicitly
considered in this article), ¥, ;, m(¥1,7,) is the coupled orbital angular momentum function, and g; Le(R;a)

is the approximate analytical basis function described in Ref. 20. Briefly, within the given [/,/,] subspace,
these approximate analytical channel functions are obtained as follows: (a) For I, =1,=1, g/(R ;a) is ob-
tained from the r-weighted radial hydrogenic nl wave function r;R,;(r;) by replacing r; by R sinacosa. An
additional factor cos2a is multiplied by the resulting expression if L +S=o0dd. (b) For l,5£1,(1; <I,), the
generalized analytical function is obtained (i) by expressing the r-weighted radial hydrogenic nl; wave func-
tion as

1 —ry/n
iR (r)=rir) Py (r)e” 7",

where Py (r) is the Laguerre polynomial, and (ii) by replacing 7, by R sina and multiplying (cosoz)lﬁ'1 by
the resulting expression. For example, (4) is expressed as

1, 1,m =[(sina)1‘+l(cosa)"“P,,I,(R sina)e =Ry, | 1y (r1,F5)] (5)

for the channel which converges to the hydrogenic
nl; state in the limit R— . If there are two hy-
drogenic limits n/, and nl, for a given n within the
[1,1,] pair, the other generalized analytical func-

tion ¢y,;,, is obtained from (5) by interchanging /,
and /,. Since nl; and nl, hydrogenic states are de-
generate, the “actual” channel function within
[1,1,] subspace will be the linear combination of
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¢’|’z" and ¢’2’|"’ resulting in channel functions

which have the “ + » and “—” characters as origi-
nally described by Cooper et al.?* for the doubly
excited states of He.

The basis functions (4) are normalized at each R
by requiring

/2 2
[ e, (R;0)Pda=1. )
These normalized functions reduce to hydrogenic
nl, states as R— o and a—0. In the
intermediate-R region, it was shown?’ that the
channel functions within the given [/;/,] subspace
were well represented by such analytical functions.
In the small-R region, such analytical basis func-
tions reduce to hyperspherical harmonics u; 1,

[which are the exact solutions of (2) at R =0] if
the channel corresponds to the lowest channel of
that particular [/;/,] subspace. For higher chan-
nels the analytical channel function does not
reduce to hyperspherical harmonics and we remedy
the small-R region by including hyperspherical
harmonics in the basis set directly. Therefore, in
the actual calculation several hyperspherical har-
monics and several generalized analytical basis
functions (4) are included in the diagonalization of
Eq. (2). Since the small-R region is expected to be
well represented by hyperspherical harmonics and
the large-R region by the generalized analytical
channel functions, the basis set required for the di-
agonalization is small. It is important to point out
that previously the potential curves U, (R) were
calculated either by solving the coupled differential
equations (2) directly or by diagonalization using
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eigenfunctions UL Lym method often suffers from

numerical instability when many [/,/,] are includ-
ed and the second method suffers from slow con-
vergence at large R, where basis u; ; » with large

values of m are needed in the diagonalization.

III. POTENTIAL CURVES

The potential curves which converge to the
N =3 threshold and the two lowest curves which
lie below the N =4 threshold for '3S symmetries
of H™ are shown in Fig. 1. Curves that converge
to the N =3 threshold for *P°, 3 D¢ symmetries
are shown in Figs. 2(a) to 2(d) and for "3P¢ sym-
metries are shown in Fig. 3. Lower curves which
converge to the N =1 and N =2 thresholds have
been previously calculated®® using different nu-
merical techniques. The present calculations agree
with previous results for these lower channels.

The size of the basis set used in the present cal-
culation is much smaller than those used by Klar
and Klar’® since the basis functions used here are
well behaved in both R -0 and R — o limits. In
a typical calculation, for example, to obtain the
curves shown in Fig. 1(a), basis functions consist-
ing of hyperspherical harmonics uy,, with
(Im)=(02), (04), (06), (12), (14), (22), (32), and
analytical channel functions ¢y, with (In)=(01),
(02), (03), (04), (12), (13), (14), (23), (24), (34), and
(45) are included in the diagonalization. As illus-
trated in Ref. 20, because ¢y, (R ; Q) with n =141
reduces to uy,(L) as R —0, the basis functions
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FIG. 1. Potential curves for H~ 3S* channels converging to the N =3 and N =4 limits of H.
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uyo(Q2) are not needed in the diagonalization.
Since analytical channel functions are not orthogo-
nal, any basis function which has a large overlap
(>0.9) is automatically rejected in the calculation,
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FIG. 2. Potential curves for H- 3P° and "*D* channels converging to the N =3 limit of H.

so the actual calculation involves a smaller basis
set than indicated above.

The potential curves shown in Figs. 1 and 2 are
not all adiabatic curves. Indeed, diabatic crossings
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FIG. 3. Potential curves for H~ "*P¢ channels converging to the N =3 limit of H.
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appear in Fig. 1(a), and in Figs. 2(a)—2(d). These
crossings, shown by dashed lines, are drawn by in-
terpolating the calculated adiabatic curves smooth-
ly at points of avoided crossing and allowing the
curves to cross. These diabatic curves are prefer-
able to adiabatic ones such that the characters of
channel functions ®,(R ;Q) are preserved as R
varies. In the case of L =0, such characters can
be visualized by showing plots of

| Pu(R;Q) | *= | ,(R;a,6),) |2

on the (a,0},) plane.'? For example, such plots
(Fig. 4, Ref. 12) revealed that charge-density con-
centrates near the Wannier point (a =45°,
6,,=180°) for channel 4a but concentrates mostly
in the smaller 6, region for channel 3¢c. In fact,
channels 4a and 3c cross twice in Fig. 1(a). Such
crossing can also be detected by observing the vari-
ation of the dominant expansion coefficients ay 1,4

with R, by the large values of (®, |d®,/dR ) near
the crossing point or by the degree of angular
correlations, as measured by the average value of
0,, (see Sec. V). Single crossings are observed be-
tween channels 3a and 3b for 'P° and 3D¢ and be-
tween channels 3b and 3c for *P° and 'D®. Such
crossings originate from the fact that exchange
plays a more important role in determining the en-
ergy eigenvalue U,(R) at small R, while at large
R, it is dominated by the linear Stark effect of di-
pole coupling (see Sec. IV). A similar crossing has
been observed between the 4+ and — channels
(corresponding to channels 2a and 2b in the
present notation, respectively) in 'P° below the

N =2 threshold.*®

IV. CLASSIFICATION OF RESONANCES
AND RADIAL WAVE FUNCTIONS

The eigenvalues and radial wave functions for
each asymptotically attractive potential U,(R) are
obtained by solving the equation

2
}i—z—Uu(R)+2El’j F"(R)=0

for the nth excited state of channel u. As
described by Seaton? and by Gailitis and Dam-
burg,?* because of the degeneracy of hydrogenic 3s,
3p, and 3d states (except for the fine-structure
splitting Ae~0.2 cm~!) which are coupled to
form a permanent dipole moment, the asymptotic
form of the potential curves converging to the

N =3 threshold behaves as

1539
U“(R)R:»w—%+a,,/R2 (in Ry) . (8)

It is known that if a, is negative and |a, | > %,
then the asymptotic dipole potential itself is strong
enough to support an infinite number of bound
states. For such a dipole potential, the energy
eigenvalues obey the exponential law

— =R, ,=e ¥, 9

where A, = |a,++ | /% and E}. is evaluated from
the H(N =3) threshold. The potential curves
shown in Figs. (1)—(3) follow Eq. (8) only in the
large-R region; the more attractive wells at smaller
R are attributed to the strong correlations. On the
other hand, for the high-lying states of each chan-
nel, the states are supported primarily by the
asymptotic dipole potential and Eq. (9) is then ap-
proximately satisfied. Recently, Gailitis?' used Eq.
(9) to classify the resonances below the N =3
thresholds calculated by other workers. Since Eq.
(9) is not valid for the lower members of each
series and the channels are not determined solely by
the asymptotic dipole potentials, some of his clas-
sification turns out to be erroneous.

In Table I the energies from threshold for the
resonances in meV are given in accordance with
the channels labeled in Figs. 1, 2, and 3 and in
terms of Herrick’s® quantum numbers K and T. In
converting Rydbergs into electron volts, 1
Ry=13.59842 eV was used to account for finite
nuclear mass effects. For each channel u, the
parameters a, and R, are also given. The calcu-
lated eigenvalues E, from the potential curves are
compared with recent calculations of Lipsky
et al.”® and of Morgen et al.?® Earlier calculations
are not included in the tabulation here.?’” With the
aid of potential curves presented in Sec. III, we be-
lieve that resonances below the N =3 threshold
calculated by Lipsky et al. and by Morgen et al.
are correctly classified in Table I. Our channel as-
signment differs from Gailitis’s classification for
3P° and 'De states.

The misclassification of Gailitis originates from
the fact that curves 3a and 3b cross for 'P° and
*D° but not for *P° and 'D°. The parameters a,,
and R, reflect the asymptotic dipole coupling but
without providing information about the strength
of electron correlations at small R. The more at-
tractive ' P° potential curve is the 3a channel,
corresponding to (K,7T)=(1,1) in Herrick’s nota-
tion, with asymptotic dipole coefficient
a, = —5.16; the more attractive 3P° potential curve
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TABLE 1. Channel classifications for doubly excited states of H™ lying below the N =3
and N =4 hydrogenic thresholds. The calculated energies are from the present hyperspheri-
cal coordinate approach, from the results of Lipsky et al. (Ref. 25) and from Morgen et al.
(Ref. 26) with the present classification scheme. For >P° and D states, this classification
differs from the one presented by Gailitis (Ref. 21). The energies are given in meV’s from
the thresholds where the conversion 1 Ry=13.59842 eV has been used. Channels are desig-
nated using the symbols in Figs. 1—3, as well as the quantum numbers (K, T) used by Her-
rick. Asymptotic dipole potential parameters a, [cf. Eq. (8)] and energy ratios R, [cf. Eq.

(9)] for each channel are also given.

1s¢ Channel 3a (K,T)=(2,0) a,=—16.199 R,=4.82
(3a,1)? 347.7° 369.7° 364.4¢
(3a,2) 52.8 61.5 58.2
(3a,3) 10.8 11.8
35e Channel 3a (K, T)=(2,0) a,=—16.199 R,=4.82
(3a,1)® 90.8° 93.1° 92.14
(3a,2) 18.2 18.5 13.8
(3a,3) 3.7 1.3
1pe Channel 3a (K, T)=(1,1) a,=—5.220 R,=16.75
(3a,1) 151.0° 184.5° 190.9¢
(3a,2) 4.9 8.8 6.7
Channel 3b (K, T)=(2,0) a,=—14.897 R,=5.16
(3a,1) 72.1° 82.0° 80.5¢
(3a,2) 13.6 14.9 10.1
3p° Channel 3a (K,T)=(2,0) a,=—14.897 R,=5.16
(3a,1)® 335.4° 342.2¢ 334.6¢
(3a,2) 48.4 52.2 49.4
(3a,3) 9.3 9.7
Channel 3b (K, T)=(1,1) a,—5.220 R,=16.75
(36,12 17.7° 22.3¢
'De Channel 3a (K,T)=(2,0) a,=—12.249 R,=6.13
(3a,1)® 267.8° 279.5° 281.5¢
(3a,2) 32.1 34.4 32.9
(3a,3) 5.2 4.8
Channel 3b (K, T)=(1,1) a,=-—2.30 R,=80.55
(3b,1)° 6.3° 4.9°
3pe Channel 3a (K,T)=(1,1) a,=-2.30 R,=80.55
(3a,1) 78.9° 104.3° 92.04
(3a,2) 0.5 0.26
Channel 3b (K,T)=(2,0) a,=—12.249 R,=6.13
(3b,1)° 67.2° 59.44 57.94
(3b,2) 10.5 9.1 42
pe Channel 3a (K, T)=(1,1) a,=—5.219 R,=16.75
(3a,1)® 16.0° 22.8°
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TABLE 1. (Continued.)

’pe Channel 3a (K, T=(1,1) a,=—5.219 R,=16.75
(3a,1) 179.5° 191.4°
(3a,2) 6.0 9.4

15e Channel 4a (K,T)=(3,0) a,=—33.321 R,=2.98
(4a,1) 244.8° 234.9¢ 227.7¢
(4a,2) 70.4 71.7 94.2

3se Channel 4a (K,T)=(3,0) a,=—33.321 R,=2.98
(4a,1) 82.1° 85.5¢
(4a,2) 27.8 27.5

* (u,n) nth state of channel u.
® Present calculations.
¢ Lipsky et al. (Ref. 25).

belongs to the 3a channel but has corresponding
(K,T)=(2,0), and a, = —16.75. A similar switch-
over also occurs for 'D¢ and *D°.

The lowest eigenvalues for each L and S given in
Table I, as calculated in the present approach, are
probably not as accurate as those obtained by other
methods. A more accurate result may be obtained
by including off-diagonal coupling terms. On the
other hand, higher members of each series and
even the lowest member of the less attractive chan-
nels are probably more accurately calculated in the
present work. These high-lying states are very dif-
fuse and are supported primarily by the dipole po-
tentials. Other variational approaches are designed
usually for the more tight-binding states and often
do not describe these diffuse orbitals adequately.

In Fig. 4(a) the radial wave functions F ,I,(R) for
the lowest member of channels u=3a and 4a for
1.35¢ states are shown. These graphs illustrate the
“size” of the states. Similar graphs for the two
lowest members of channels 3a and 3b for !P°
states are shown in Fig. 4(b) and the three lowest
members of the u=3a*P° states are shown in Fig.
4(c). Notice the diffuseness of the high-lying states
shown in Figs. 4(b) and 4(c).

The potential curves shown in Fig. 2(a) for 'P°
states have previously been calculated by Greene''
in connection with the interpretation of Feshbach
resonances below the N =3 threshold in H™ photo-
detachment measurement by Hamm et al.?®
Greene’s calculations differ from the present one in
that basis with (/,/,)=(2,3) are not included and
Eq. (2) is solved numerically. In addition, the
second-order diagonal coupling term
(D, | d2<l>,,/dR2) is included in U,(R) in the
present work but not in Greene’s. Notice that

4 Morgen et al. (Ref. 26).
¢ Oberoi [Ref. 27(d)].
THo (Ref. 29).

channel 3a corresponds to the usual + channel
and channel 3b to the usual — channel. The +
channel (or 3a channel) is more easily populated in
a collision and, in fact, both of the two resonances
observed in the experiment of Hamm et al. belong
to the p=3a channel.

V. ANGULAR CORRELATIONS

Doubly excited states often exhibit strong radial
and angular correlations not familiar in singly ex-
cited states. While radial correlations—as meas-
ured by the distribution of charge density in angle
a—diminish at large R, angular correlations persist
even at large R. For L =0 states, this high degree
of angular correlation can be visualized directly by
displaying the surface charge-density plots
| $u(R;Q) | % on the (a,6},) plane. It was shown in
Ref. 12 that the distribution of | ®,(R;Q)|? for
each channel y remains relatively constant as R in-
creases. For L=£40 states it is more difficult to
visualize | ®,(R;Q)|?* directly since the internal
coordinates a and 6, cannot be conveniently
separated from the angles which describe the
overall rotation of the system. In this section, it
will be shown that doubly excited states with L =40
also exhibit strong angular correlations similar to
L =0 states.

To show the degree of angular correlations, we
define the average angle (6,,) by

c0s{6,), =(D,(R;Q) | cosby, | P(R;Q)) ,
(10)

where the integration is over all the angles .
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FIG. 4. Radial wave functions of some doubly excited states of H™; (a) for the lowest state for 3S* lying below
H(N =3) and H(N =4) thresholds, (b) for the two lowest states of channel 3a and channel 3b of 'P®; (c) for the three
lowest states of channel 3a of 3P°.
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FIG. 5. Potential curves for H~ S channels and the average angle {6,,) for the two channels converging to the

N =2 threshold of H.
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FIG. 6. Same as Fig. 5 except for "*P° channels.

This definition is simple, but is not the most suit-
able one since states which are not correlated
correspond to {(6,,)=90°. On the other hand, this
is not serious since doubly excited states always ex-
hibit strong angular correlations [through the
strong mixing of different (/,,/,) pairs in Eq. (3)]
and since the angle (6, ># provides a qualitative
description of angular correlations between the two
electrons for each channel u.

In Fig. 5 the variations of (6,,), with R for the
two lowest doubly excited channels for 'S¢ and 3S¢
states of H™ are shown. For comparison the
relevant potential curves are also shown. Two im-
portant aspects are easily observed: (1) (8,,) u 18
independent of R for the intermediate- and the
large-R regions; (2) (6, ), differs greatly for
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FIG. 7. Same as Fig. 5 except for >*D¢ channels.
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FIG. 8. Average angle (6,,) for H- 35 channels
converging to the N =3 and N =4 thresholds of H.
Refer to Fig. 1 for the potential curves.

#=2a and 2b. [For our purpose of discussion, the
small-R region for each channel u is defined for
values of R, where the potential curve U u(R) is
highly repulsive. The intermediate-R region is de-
fined for attractive curves as where the potential
wells lie and for repulsive curves as where the po-
tential curves begin to flatten out.] In Fig. 5 we
notice that (6),) ~ 120° for u=2a and ~ 60° for
p=2b, thus the two electrons tend to stay on op-
posite sides of the nucleus for p=2a and to stay
on the same side of the nucleus for 4 =2b. These
results are independent of whether S =0 or S =1.

In Fig. 5 the average (0,,) varies quite rapidly
in the small-R region. Since the channel function
®,(R;Q) is obtained by an adiabatic approxima-
tion, this rapid variation clearly suggests that adia-
batic channel functions may not be appropriate for
higher excited states of each channel. In fact, ex-
isting calculations for the high-lying states and
scattering phase shifts indicated that the adiabatic
approximation is not very suitable.!’—!?

It must be emphasized that one should not view
(6),) as the “angle” between the two electrons.
As shown in Ref. 12, the actual surface charge
density | ®,(R;a,6;,)|? is peaked at 6;,= for
1=2a and concentrated mostly in the region
61,>m/2. For p=2b, the surface charge density
shows concentration in the region 6, <7/2 with a
peak near 6,,=0 (see Fig. 5, Ref. 12). In Figs. 6
and 7, (6y,), and U,(R) for p=2a, 2b, and 2c are
shown, respectively, for "3P° and >D*® states. The
angle (6,), for each channel remains roughly
constant in the intermediate- and large-R regions
and they differ quite substantially between the
channels, indicating different angular correlations
in these channels. In comparison with Fig. 5, we
notice that the largest (6;,) reduces from 120° for
1.35¢ to 116° for 3P° and to 114° for 3D® and the
smallest (8;,) increases from 60° for 1"35¢ to ap-
proximately 70° for "*P° and *D*® and the channel
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FIG. 9. Average angle (6;,) for H~ P and D channels converging to the N =3 thresholds of H. Refer to

Fig. 2 for the potential curves.

in the middle has (6;,) =90". Thus the overall or-
bital angular momentum of the system has only
minor effect on angular correlations. Notice that
(612), for each channel is not constant in the
small-R region and the results are independent of
whether S =0 or S =1.

We once again point out the crossing of the two
curves 2a and 2b for 'P°. This crossing is neces-
sary if (0,,) is to remain constant with respect to
R for each channel. In general, one would expect
that large (6;,) corresponds to lower U,(R) be-
cause of smaller Coulomb repulsion due to the two
electrons. This would be the case if angular corre-
lation were the sole factor in determining the po-
tentail energy U,(R). In fact, we see this is not the
case for 'P°. The — channel (2b in Fig. 5), which
has largest (8,,), although having lowest poten-
tials at large R, is actually more repulsive at small-
er R than the + channel (2a in Fig. 5). At larger

R, there is no radial correlation and the — channel
which has (6;,) ~116° has lower potential than
the 4+ channel which has (8,,) ~90°. At smaller
R where radial correlations are important, the +
channel achieves lower potentials by exhibiting a
higher degree of radial correlation and the channel
function shows large amplitude near
a=1m/4(ry~r;). On the other hand, the — chan-
nel, with a node near a=/4, has higher
potentials. 5@

The angular correlations for the channels that
converge to the higher hydrogenic thresholds are
shown in Figs. 8 and 9. The relevant potential
curves are shown in Figs. 1 and 2 where the
intermediate- and large-R regions can be specified.
We again notice that (6y,), for each channel
remains almost constant after passing the small-R
region. The diabatic crossings in U,(R) in Figs. 1
and 2 are made necessary if (6;,), for each chan-
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nel in the intermediate- and large-R regions is to
stay constant.

VI. SUMMARY

In this article the properties of doubly excited
states lying below H(N =3) and H(N =4) thres-
holds are investigated in hyperspherical coordi-
nates. With the recently developed analytical
channel functions, it is feasible to calculate the
large number of adiabatic potential curves
corresponding to high-lying doubly excited states.
It is found that diabatic crossing between the
curves is often needed if the channels are to main-
tain their characters. The role of radial and angu-
lar correlations are also discussed. While the di-
pole coupling, as a result of angular correlation
and of the degeneracy of hydrogenic excited states,
is the only important factor in determining the po-
tential energy curves at large hyper-radii R, radial

correlations, which are not incorporated in the di-
pole coupling, are important at small R. These
two competitive correlations are both important in
deciding the properties of doubly excited states.
Classifications of doubly excited states based upon
angular correlations alone will end up with errone-
ous results. Angular correlations for doubly excit-
ed states below H(N =2) and H(N =3) thresholds
are also investigated. It is found that each channel
possesses constant angular correlations in the
intermediate- and large-R regions but not in the
repulsive small-R region. It appears that break-
down of the adiabatic approximation occurs
predominately in the small-R region but this sub-
ject will be delayed for future study.
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