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Macroscopic scaling of high-order harmonics generated by two-color
optimized waveforms in a hollow waveguide
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We present the macroscopic scaling of high harmonics generated by two-color laser pulses interacting with
Ne gas in a hollow waveguide. We demonstrate that the divergence of harmonics is inversely proportional to
the waveguide radius and harmonic yields are proportional to the square of the waveguide radius when the gas
pressure and waveguide length are chosen to meet the phase-matching condition. We also show that harmonic
yields are inversely proportional to the ionization level of the optimized two-color waveform with proper gas
pressure if waveguide radius and length are fixed. These scaling relations would help experimentalists find
phase-matching conditions to efficiently generate tabletop high-flux coherent soft x rays for applications.
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I. INTRODUCTION

High-order harmonics generated in a gas medium by an
intense ultrafast laser would provide tabletop light sources
extending from extreme ultraviolet (XUV) to x rays on the
femtosecond or even attosecond time scale [1,2]. Because of
their excellent spatial and temporal coherence properties, high-
harmonic light sources have been widely applied in different
research areas of physics and chemistry [3], from the probing
of ultrafast electronic processes [4,5] to ultrahigh precision
measurement of narrow XUV transitions [6], imaging of
nanoscale structure [7], and so on. High-order harmonic
generation (HHG) is a highly nonlinear process which is
sensitive to the driving laser and the gas target [8–11].
Therefore, there is a wide range of macroscopic parameters
that affects the generation of harmonics in an experiment,
thus making it difficult to locate the needed phase-matching
conditions for the efficient buildup of macroscopic harmonic
fields in a gas medium [12–14].

The available laser systems in different laboratories are
varied. For applications HHG sources in different spectral
or intensity regions may be needed. It is advantageous to
investigate the scaling of harmonic generation processes to
extend existing macroscopic parameter space for reaching
phase-matching conditions in new regimes [14,15]. One of
the well studied examples is the scaling of HHG yield with the
driving laser wavelength. By employing longer wavelength
lasers [16–18], the cutoff energy of high harmonics increases
quadratically with λ, but the single-atom harmonic yield scales
like λ−5∼−6 [19–23], where λ is the laser wavelength. On the
other hand, the rapid decrease of harmonic yield at longer
wavelength can be compensated by adjusting the macroscopic
conditions, for example, by increasing the gas pressure [24,25].
Midorikawa’s group investigated the power scaling of HHG
using a self-guided beam in 2002 [26]. However, their designed
scaling was not achieved due to the limitation in pulse energy.
Recently, a general scaling rule has been proposed [14,27,28],
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which identifies the invariance of HHG processes from the
μJ-level multi-MHz high-repetition-rate lasers with tightly
focused geometry to the loosely focused 100 mJ or Joule
level pulses [29]. To obtain such scaling for nonlinear optical
phenomena in gases [30], several macroscopic parameters,
such as the medium length, beam diameter, focal length, and
gas density, need to be appropriately scaled with input pulse
energy. Scaling with macroscopic parameters embodied in
the different generation geometries of strong-field phenomena
will simplify the search of the phase-matching domain when
exploring new regimes of HHG.

To overcome low up-conversion efficiency of HHG, it
has been proposed to modify the subcycle laser waveform
by optimally synthesizing multicolor laser pulses [31–37]
(see review in Ref. [38]). We also suggested to include the
influence of propagation effects in the optimization procedure
for two-color waveforms, which were capable of enhancing
soft x-ray harmonics by one to two orders over single-
color laser pulses without the increase of the total power
[39]. We then showed that low-divergence bright soft x-ray
harmonics and isolated attosecond pulses were efficiently
generated by guiding optimized two-color waveforms in a
hollow waveguide while macroscopic parameters, such as gas
pressure, waveguide radius and length, were further optimized
[40,41]. However, it is still quite time consuming to routinely
run propagation simulations, even in a reduced parameter
space in which the most important macroscopic parameters
are varied for a given optical waveform. Thus it is desirable
to search for the scaling rule of high harmonics generated in
a guided geometry [42–44]. So far the scaling of macroscopic
parameters has been studied for one-color laser pulses in the
free geometry only [14,26–28,30]. Whether or not such scaling
will work for multicolor laser pulses in a hollow waveguide
has not been examined yet.

The main goal of this article is to analyze how to properly
scale high harmonics generated by two-color waveforms
incident into a gas-filled hollow waveguide. We will identify
the scaling rule for harmonic divergence [45–47] and harmonic
yields with different parameters such as waveguide radius
and ionization level. The article is arranged as follows: in
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Sec. II, we will briefly summarize the theoretical models
for optimized waveforms, laser and HHG propagation, and
far-field harmonic emission. In Sec. III, we will illustrate the
scaling law of the harmonic divergence and harmonic yields
with the waveguide radius under different phase-matching
conditions by simulating the evolution of the electric field
along the propagation distance. In Sec. IV, the scaling law will
be presented in terms of the ionization level of the waveform;
the article will be concluded in Sec. V.

II. THEORETICAL METHODS

A. Optimized two-color waveforms

The two-color waveform in Ref. [39] consists of a fun-
damental laser (with longer wavelength of λ1) and its third
harmonic (λ2). In one optical cycle of the fundamental the
electric field is expressed as

E(t) = E1 cos(ω1t + φ1) + E2 cos(ω2t + φ2). (1)

Here Ei , ωi , and φi (i = 1, 2) are the respective amplitudes,
angular frequencies, and phases of the two pulses. In the
optimization, ω1 was given, φ1 was set to zero for simplicity,
and ω2 = 3ω1 since the third harmonic is the best in the
two-color synthesis as demonstrated in Ref. [39]. We searched
the parameters {E1,E2,φ2} to maximize the single-atom HHG
yield. Genetic algorithm (GA) was used to optimize the fitness
function which is the maximal harmonic yield at the cutoff.
Additional constraints that would favor single-atom harmonics
after macroscopic propagation were imposed: (a) the cutoff
energy should be maintained at the desired value; (b) in the
plateau region, harmonic emissions from “short”-trajectory
electrons should be stronger than those from the “long” ones;
(c) the ionization level at the end of a single-cycle waveform
was restricted to less than a predetermined value of a few
percent. Examples of two-color optimized waveforms with
different ionization level are shown in Table I.

B. Propagation of driving laser and harmonic
fields in a hollow waveguide

To calculate XUV or soft x-ray high harmonics emit-
ted in a gas-filled hollow waveguide, both time-dependent
Schrödinger equations (TDSEs) and Maxwell’s wave equa-
tions (MWEs) are solved. The former accounts for single-
atom response to the laser pulse, and is calculated using the
quantitative rescattering (QRS) model [48]. The propagation of

TABLE I. Laser parameters for two-color waveforms with varied
ionization level. These waveforms can generate single-atom HHG
cutoff energy at 250 eV for Ne atom. Laser intensities (|E1|2 and
|E2|2) are in units of 1014 W/cm2. λ1 is fixed at 1600 nm, φ1 = 0,
and λ2 = λ1/3. Taken from Supplementary Table 3 in Ref. [39].

Ionization level |E1|2 |E2|2 φ2

1% 2.39 0.50 1.50π

2% 1.98 1.32 1.36π

3% 1.98 1.40 1.43π

4% 1.95 1.55 1.46π

5% 1.84 1.88 1.42π

the laser pulses and harmonics in the macroscopic gas medium
is calculated using the prescription in Ref. [49]. Further details
of solving these propagation equations in a guided geometry
were presented in Refs. [40,41].

In the simulation, the distribution of the gas density inside
the waveguide is uniform. The initial spatial beams are chosen
to be the lowest EH11 mode which can be obtained when
the ratio between the beam waist of incident Gaussian pulse
and the waveguide radius is about 65% [24]. Both colors are
assumed to have a realistic Gaussian temporal envelope with
full width at half maximum (FWHM) duration of 16 fs (three
optical cycles of the 1.6 μm laser). The initial on-axis electric
field at the entrance of the waveguide is always chosen to be
the optimized two-color waveform. Near-field harmonics are
taken to be the harmonics emitted on the exit plane of the
hollow waveguide.

C. Far-field harmonic emission

To obtain the harmonic emission (or harmonic divergence)
in the far field, near-field harmonics need to further propa-
gate in the vacuum. In the paraxial approximation, far-field
harmonics can be calculated through a Hankel transformation
[49]

E
f

h (rf ,zf ,ω) = ik

∫ a

0

En
h(r,zn,ω)

zf − zn

J0

(
krrf

zf − zn

)

× exp

[
− ik

(
r2 + r2

f

)
2(zf − zn)

]
r dr, (2)

where J0 is the zeroth-order Bessel function, the wave vector
k is given by k = ω/c with the harmonic frequency ω, and a is
the waveguide radius. In Eq. (2), the positions of near and far
fields are given by zn and zf , respectively. En

h(r,zn,ω) is the
near-field harmonic; r and rf are the transverse coordinates in
the near and far fields, respectively.

III. SCALING OF THE DIVERGENCE AND YIELD OF
HARMONICS WITH THE WAVEGUIDE RADIUS

Previously, we have applied the waveform (WF) consisting
of the 1.6 and 0.533 μm laser pulses at the 2% ionization level
(see Table I) into a Ne gas-filled waveguide which has a radius
of 125 μm to generate soft x-ray high harmonics. We varied
both the waveguide length and the gas pressure, and found that
the optimal values were 5 mm and 50 Torr, in order to achieve
the highest cutoff energy of about 250 eV and the highest
harmonic yields, simultaneously. The resulting harmonics are
shown in Fig. 1(b). These harmonics have very good spatial
coherence, and their half-divergence angles are within 1 mrad.
We consider good phase matching has been achieved in this
case.

To maintain the same phase matching, the waveguide
radius, gas pressure, and medium length should be adjusted
concurrently, instead of independently, i.e., the scaling of
these parameters has to be identified. Since we are dealing
with two-color laser pulses, the commonly used formulation
of phase mismatch between the one-color laser pulse and high
harmonics cannot be employed. Thus we turn to investigate the
time shift for each color, using an analysis similar to Ref. [40].

013422-2



MACROSCOPIC SCALING OF HIGH-ORDER HARMONICS . . . PHYSICAL REVIEW A 96, 013422 (2017)

FIG. 1. Harmonic emission (normalized) in the far field using the two-color waveform with 2% ionization level in Table I as the initial
on-axis laser pulse. The incident beam size is adjusted to ensure that the fundamental EH11 mode is guided. Other parameters for (a)–(f) are
listed in Table II.

For each color, the refractive index inside the waveguide is
expressed as

nl ≈ 1 − μ2
1λ

2
l

8π2a2
+ p(1 − η)δ1(λl) − pηn0reλ

2
l

2π
. (3)

Here a is again the waveguide radius, μ1 the mode factor
(=2.405 for fundamental EH11 mode), p the gas pressure, η

the ionization probability, λl the laser wavelength, δl the atomic
dispersion, n0 the neutral atomic density, and re the classical
electron radius. Each correction term on the right-hand side
of Eq. (3) contributes to the time shift (or group delay) with
respect to the reference frame (moving at the speed of light). If
the laser pulse has propagated a distance �z, the time shift of
each color due to the waveguide mode, the atomic dispersion,
and the plasma defocusing can be respectively calculated from
(see Supplemental Material in Ref. [40])

�tm = (�z/c)
(
μ2

1λ
2
l /8π2a2

)
, (4)

�ta = (�z/c)p[1 − η(t)]δ1(λl), (5)

TABLE II. Macroscopic parameters for harmonic emissions in
Fig. 1.

Waveguide Gas pressure Waveguide
radius (μm) (Torr) length (mm)

(a) 75 138.9 1.8
(b) 125 50.0 5.0
(c) 200 19.5 12.8
(d) 75 55.6 1.4
(e) 125 20.0 4.0
(f) 200 7.8 10.2

and

�tp = (�z/c)
[
pη(t)n0reλ

2
l /2π

]
. (6)

Here the ionization probability η(t) has time dependence, and
its value at the end of the laser pulse is defined as the ionization
level.

As demonstrated in Ref. [40], the two-color waveform after
propagation obtained by numerically solving the MWEs can
be made to phase match, by properly shifting the depleted
(or designed) waveform with respect to the reference frame,
with each of the time shifts calculated using Eqs. (4)–(6),
including contributions from both colors. If the time shifts
in these equations are kept the same, the evolution of the
two-color laser pulse inside the waveguide will not change,
thus leading to invariant phase matching.

If one varies the waveguide radius only, to maintain the
same time shift the propagation distance �z in Eq. (4), or
the waveguide length, should be scaled by a2. To keep the
same time shifts in Eqs. (5) and (6), gas pressure p should be
inversely proportional to �z, i.e., ∝1/a2. Thus in Table II we
choose two waveguide radii of 75 and 200 μm in (a) and (c),
as compared to the previous one at 125 μm in (b), and the gas
pressure and waveguide length are also properly scaled as just
discussed with respect to the values in (b). By using the same
2% ionization waveform as the initial on-axis laser pulse, the
simulated harmonic spectra are shown in Figs. 1(a) and 1(c).
We can see that harmonic spectra (after normalization) in these
two figures are the same as that in Fig. 1(b), except that the
angular divergence has been rescaled. We have checked that the
normalization factor of the harmonics is proportional to a4, and
half-divergence angle is actually proportional to 1/a. The total
harmonic yields integrated over the radial distance are shown
in Fig. 2(a). The shape of the harmonic spectra obtained from
the three waveguide radii looks the same and the harmonic
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FIG. 2. Total harmonic yields integrated over the radial distance
for (a) good and (b) bad phase-matching conditions. Panels (a) and (b)
correspond to harmonic emissions in Figs. 1(a)–1(c) and in Figs. 1(d)–
1(f), respectively. In both (a) and (b), from top to bottom, three curves
are for waveguide radii of 200, 125, and 75 μm, respectively.

yields have been checked to be proportional to a2. These results
confirm the scaling of HHG driven by the two-color pulses in
the waveguide if the macroscopic parameters are correctly
scaled.

To understand how scaling works for the harmonic angular
divergence and yield, we examine the spatiotemporal laser field
in the reference frame at two selected waveguide positions,
one at the middle and the other at the end, of the waveguide.
In Figs. 3(a)–3(c), for the position at the middle, the field
distributions are the same in the three figures except that the
radial dimensions are different. The field distributions at the
end of the waveguide, as shown in Figs. 3(d)–3(f), remain the
same except that the field strength has decreased. These results
show that based on the time shift analysis for two-color pulses,
we have been able to establish the same spatial laser intensity
distributions at appropriately scaled distances.

The scaling of angular divergence of the harmonics in the far
field can be understood by using Fig. 3. A direct consequence
of spatial scaling of the laser field with a is that the same scaling
applies to the harmonics inside the waveguide. Thus the spatial
distribution of near-field harmonics En

h(r,zn,ω) in Eq. (2) also
scales with a. In Eq. (2), the term exp[−ikr2/2(zf − zn)]
can be approximated as 1.0 since the effective r-integration
region is pretty small such that r2 � (zf − zn)/k for soft x-ray
harmonics and for far field located much further away from
the exit of the waveguide. To maintain invariance of the term
J0[krrf /(zf − zn)], rf should scale with 1/a, i.e., harmonic
divergence in the far field scales with 1/a. After integration
over r , which scales with a, far-field harmonic E

f

h (rf ,zf ,ω) at
the scaled rf is thus ∝a2. This explains why the normalization
factor in Figs. 1(a)–1(c) is proportional to a4.

The scaling of the total harmonic yields can also be
explained by using Fig. 3. The total harmonic yields can be
calculated from

S(ω) ∝
∫ a

0

∣∣En
h(r,zn,ω)

∣∣2
r dr. (7)

FIG. 3. Spatiotemporal laser intensity distributions of two-color 2% waveforms in the middle [(a)–(c)] and in the end [(d)–(f)] of gas
medium for different waveguide radii as indicated. The propagation distances are 0.9, 2.5, and 6.4 mm in (a)–(c), and are 1.8, 5.0, and 12.8 mm
in (d)–(f), respectively. Gas pressure and waveguide length are chosen from (a)–(c) in Table II. These laser fields induce harmonic emissions
in Figs. 1(a)–1(c). I0 is in the units of 1014 W/cm2, and optical cycles are for the fundamental 1.6 μm laser.
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FIG. 4. Harmonic emissions in the far field by two-color waveforms at different ionization levels; see the waveform parameters in Table I.
The incident beam sizes of the two colors are independently adjusted to ensure that the fundamental EH11 mode is guided. Waveguide radii
and lengths are 125 μm and 5 mm in (a)–(c) and 200 μm and 7 mm in (d)–(f), respectively. Gas pressures are listed in Table III.

Since the spatial distribution of |En
h(r,zn,ω)|2 along r scales

with a, the integration in Eq. (7) is proportional to a2,
i.e., S(ω) ∝ a2. This explains the observed scaling of total
harmonic yields in Fig. 2. On the other hand, as discussed
in Sec. II, the initial on-axis waveform is kept the same as
the waveguide radius is varied; the input two-color laser pulse
energy is thus proportional to a2. So the harmonic conversion
efficiency at different radii is not changed.

So far we only present examples of HHG under good
phase-matching conditions. Is scaling applicable to harmonic
generation under poor phase-matching conditions? We start
with waveguide radius of 125 μm, and choose gas pressure
of 20 Torr and medium length of 4 mm. The corresponding
parameters for radii of 75 or 200 μm are listed in Table II
to ensure that gas pressure is ∝1/a2 and waveguide length is
∝a2. The simulated harmonic emissions in the far field are
shown in Figs. 1(d)–1(f). The harmonic distributions for the
three waveguide radii are the same, all with considerable on-
and off-axis emissions, indicating poor phase matching during
the propagation. The harmonic divergence is still proportional
to 1/a. The total harmonic yields are shown in Fig. 2(b), in
which the cutoff energies are significantly reduced by about
50 eV. The features of harmonic spectra are the same, and
harmonic yields are proportional to a2. Since the input pulse
energy is ∝a2, the harmonic conversion efficiency is invariant
when the waveguide radius is varied. These results show that
the scaling law discovered at good phase-matching condition
is also valid at unfavorable phase-matching condition.

IV. SCALING OF HARMONIC YIELD WITH
WAVEFORM IONIZATION LEVEL

As discussed in Sec. II, changing the ionization level adds
an additional freedom for laser waveform optimization. Is

it possible to remove the uncertainty of ionization level by
identifying its best value when macroscopic conditions are
taken into account? Starting with the HHG process by using
the 2%-ionization waveform under the optimal conditions (gas
pressure of 50 Torr and waveguide length of 5 mm) for the
waveguide with the radius of 125 μm, the harmonic emissions
are replotted in Fig. 4(b). If the ionization level η in the
waveform is varied while the waveguide radius and length
are fixed, the time shifts caused by dispersions in Eqs. (4)–(6)
should not be changed in order to preserve phase matching.
At low gas pressure we can neglect the time shift �ta due to
atomic dispersion. Since the waveguide is the same there is
no change of time shift from the waveguide mode. Thus to
keep the same phase-matching condition, the time shift in �tp
caused by the plasma should remain the same, by changing
the gas pressure by a factor proportional to 1/η. So if the
waveguide is fixed, good phase matching is maintained by
scaling the pressure by 1/η if the ionization level η is modified;
see Table III. Figures 4(a) and 4(c) show the harmonic spectra
by using waveform at ionization levels of 1% and 5% with
scaled pressures; the well localized emissions along the axis
in Fig. 4(b) are better maintained in Fig. 4(c) than in Fig. 4(a).
Since the waveguide radius is fixed, the divergence of high
harmonics is not changed among the three figures. The total

TABLE III. Gas pressures for HHG in Figs. 4 and 5 at two
waveguide radii. Ionization levels of two-color waveforms are
indicated.

Gas pressure (Torr)

Radius (μm) 1% 2% 3% 4% 5%

125 100 50 35 25 20
200 40 20 13 10 8

013422-5



CHENG JIN, KYUNG-HAN HONG, AND C. D. LIN PHYSICAL REVIEW A 96, 013422 (2017)

FIG. 5. Total harmonic yields integrated over the radial plane for
waveguide radius at (a) 125 μm and (b) 200 μm. Panels (a) and
(b) are the integrated harmonic emissions in Figs. 4(a)–4(c) and in
Figs. 4(d)–4(f), respectively. The harmonic spectra are smoothed by
using Bezier curve for easy comparison, and the multiplied factors
are indicated.

harmonic yields integrated over radial distance are shown in
Fig. 5(a). Each harmonic spectrum has been multiplied by
a factor that is proportional to η. The overlap of harmonic
spectra for 2% to 5% WF indicates that harmonic yields are
proportional to 1/η. Exception occurs for the 1% WF because
gas pressure is too high and approximations that lead to the
neglect of Eq. (5) are no longer valid.

The scaling of harmonic yields with ionization level η can
be easily understood. Since phase-matching conditions are
maintained, total harmonic yields are proportional to p2. On
the other hand, single-atom harmonic yield is ∝η. Combining
two factors, the total harmonic yield is ∝1/η.

This scaling law has been tested for another example at the
waveguide radius of 200 μm. The low-divergence harmonic
emissions have been obtained in Ref. [40] by using 2%
WF under optimal conditions (gas pressure of 20 Torr and
waveguide length of 7 mm). The spectrum is replotted in
Fig. 4(e). For other ionization levels the parameters are listed
in Table III. The harmonic emissions and total harmonic yields
are shown in Figs. 4(d)–4(f) and Fig. 5(b), respectively. The
results are in agreement with the previous ones using 125 μm
radius.

The scaling law tells us that 2% ionization can be considered
as the best value since the divergence of harmonics in the far

field is better than the 1% WF, and harmonic yields are the
strongest among other waveforms.

V. CONCLUSIONS

In summary, we investigated the scaling of the HHG process
driven by two-color waveforms in a Ne gas-filled waveguide.
Our simulations showed that the angular divergence of
harmonics is inversely proportional to the waveguide radius,
and the total harmonic yield is proportional to the square of
the waveguide radius if gas pressure and waveguide length
are chosen, respectively, to be inversely proportional and
proportional to the square of waveguide radius. The analysis
of the evolution of two-color driving laser pulses during
the propagation in the waveguide allowed us to understand
the physical mechanism of maintaining the phase-matching
conditions by appropriately choosing macroscopic parameters.
The conclusions of scaling are valid for both good and
bad phase-matching conditions. We further showed that total
harmonic yields are roughly inversely proportional to the
ionization level when gas pressure is chosen to be inversely
proportional to the ionization level for a hollow waveguide
with fixed radius and length.

Our scaling results imply that a large number of routine,
time-consuming macroscopic calculations can be efficiently
reduced with fewer macroscopic parameters. To generate high-
flux bright coherent soft x rays, it is preferable to focus laser
beams with high pulse energy at the entrance of a large-bore
hollow waveguide. However, we need to point out that some
technical difficulties may prevent the realization of using a
long straight hollow waveguide and for coupling with high
energy laser pulses into a waveguide because of the increased
fluctuations of beam pointing, and beyond a certain beam size,
the waveguide may not be necessary. To optimize multicolor
laser waveforms for HHG, it is very crucial to set ionization
level under a few percent.

Similar scaling rules should apply to the generation of soft
x-ray isolated attosecond pulses by using two-color waveforms
consisting of the fundamental laser and its second harmonic
in a hollow waveguide [41]. We anticipate this study to
inspire further interest in studying macroscopic HHG scaling
in other guided geometries, free geometries, or beam truncated
geometries [50,51] by using single- or multicolor laser pulses.
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