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Abstract

Many-body scattering problem is solved asymptotically when the size of the
particles tends to zero and the number of the particles tends to infinity.

A method is given for calculation of the number of small particles and their
boundary impedances such that embedding of these particles in a bounded do-
main, filled with known material, results in creating a new material with a desired
refraction coefficient.

The new material may be created so that it has negative refraction, that is, the
group velocity in this material is directed opposite to the phase velocity.

Another possible application consists of creating the new material with some
desired wave-focusing properies. For example, one can create a new material which
scatters plane wave mostly in a fixed given solid angle. In this application it is
assumed that the incident plane wave has a fixed frequency and a fixed incident
direction.

An inverse scattering problem with scattering data given at a fixed wave number
and at a fixed incident direction is formulated and solved.

Acoustic and electromagnetic (EM) wave scattering problems are discussed.
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Scattering problem

L0u0 := [∇2 + k2n2
0(x)]u0 := [∇2 + k2 − q0(x)]u0 = 0 in R3

u0 = eikα·x + v0, lim
r→∞

r
(∂v0
∂r

− ikv0

)
= 0, r := |x| ,

=n2
0(x) ≥ 0, α ∈ S2, k = const > 0.

L0G = −δ(x− y) in R3; n2
0(x) = 1− k−2q0(x)
q0(x) = k2 − k2 n2

0(x).
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Many-body scattering problem


L0uM = 0 in R3\

M⋃
m=1

Dm; Dm = Bm(xm, a)

∂uM

∂N
= ζmuM on Sm := ∂Dm, ζm =

h(xm)
aκ

, 0 < κ ≤ 1,

uM = u0 + vM ,

where N is the outer unit normal to Sm, and h(x) ∈ C(D) is an
arbitrary function, h = h1 + ih2, h2 ≤ 0. Let
d := minm6=j dist (xm, xj). We assume that:

ka� 1, d� a, d = O(a(2−κ)/3),

N (∆) :=
∑

xm⊂∆

1 =
1

a2−κ

∫
∆
N(x)dx[1 + o(1)], a→ 0.

M = M(a) ∼ O(a−(2−κ)), 0 ≤ κ ≤ 1.
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uM (x) = u0(x) +
M∑

m=1

∫
Sm

G(x, t)σm(t)dt

= u0(x) +
M∑

m=1

G(x, xm)Qm +
M∑

m=1

Jm.

Qm :=
∫

Sm

σm(t)dt, Jm :=
∫

Sm

[G(x, t)−G(x, xm)]σm(t)dt,

Im := |G(x, xm)Qm|.

|Jm| � Im |x− xm| � a.
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If |Jm| � Im, a→ 0, then

uM (x) ' u0(x) +
M∑

m=1

G(x, xm)Qm, |x− xm| ≥ d� a.

Define

ue := u(m)
e := uM (x)−

∫
Sm

G(x, t)σm(t)dt, |x− xm| ∼ a.

If |x− xm| � a, then ue ∼ uM as a→ 0.

We prove below that

Qm ∼ −4πue(xm)h(xm)a2−κ.

The ue(xm) are found from linear algebraic system:

ue(xm) = u0(xm)− 4πa2−κ
M∑

m′ 6=m

G(xm, xm′)ue(xm′)h(xm′).
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Formula for Qm

ueN − ζmue +
Amσm − σm

2
− ζmTmσm = 0 on Sm.

Amσm := 2
∫

Sm

∂G(s, t)
∂Ns

σm(t)dt, Tmσm :=
∫

Sm

G(s, t)σm(t)dt.

G(x, y) =
1

4π|x− y|
[1 +O(|x− y|)], |x− y| → 0.

4
3
πa3∆ue(xm)−ζm4πa2ue(xm) = Qm+ζm

∫
Sm

ds

∫
Sm

σm(t)dt
4π|s− t|

,∫
Sm

Aσmdt = −
∫

Sm

σmdt,
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∫
Sm

ds

4π|s− t|
= a

4
3
πa3∆ue(xm)− 4πζmue(xm)a2 = Qm(1 + ζma).

Qm =
a3[4π

3 ∆ue(xm)− 4πue(xm)ζma−1]
1 + ζma

.

If ζm = h(xm)
aκ , κ < 1, then

Qm ∼ −4πue(xm)h(xm)a2−κ.

If κ = 1, then

Qm ∼ −4πue(xm)
h(xm)

1 + h(xm)
a.
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Formula for σm

uM = ue + σm

∫
Sm

dt

4π|x− t|
= ue +

σma
2

|x|
, |x| = O(a).

ueN −
h(xm)
aκ

ue − σm −
h(xm)
aκ

σma = 0

σm =
ueN − h(xm)ue(xm)a−κ

1 + h(xm)a1−κ

If κ < 1, a→ 0, then σm ∼ −h(xm)ue(xm)a−κ.

If κ = 1, a→ 0, then σm ∼ − h(xm)
1 + h(xm)

ue(xm)a−1.

If 1 < κ < 2, a→ 0, then σm ∼ −ue(xm)
a

.
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When is Im � |Jm|?

|G(x, xm)Qm| = Im ∼ a2−κ

a(2−κ)/3
, Jm ∼ a

a2(2−κ)/3
· a2−κ ∼

a3−κ−2(2−κ)/3.

a2−κ−(2−κ)/3 � a3−κ−2(2−κ)/3 if 0 < κ ≤ 1.

uM (x) = u0(x)− 4π
M∑

m=1

G(x, xm)h(xm)ue(xm)a2−κ,

|x− xm| ≥ d, κ < 1.

d = O(a(2−κ)/3).
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4π
M∑

m=1

G(x, xm)h(xm)ue(xm)a2−κ

= 4π
P∑

p=1

G(x, y(p))h(y(p))ue(y(p))a2−κ
∑

xm∈∆p

1

= 4π
P∑

p=1

G(x, y(p))h(y(p))ue(y(p))
a2−κ

a2−κ
N(y(p))|∆p|(1 + εp)

→
∫

D
G(x, y)p(y)u(y)dy, p(y) := 4πh(y)N(y).

N (∆p) =
1

a2−κ

∫
∆p

N(x)dx[1 + o(1)], a→ 0.

u(x) = u0(x)−
∫

D
G(x, y)p(y)u(y)dy.
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Lemma

Lemma. If f ∈ C(D) and xm are distributed in D so that

N (4) =
1

ϕ(a)

∫
4
N(x)dx [1 + o(1)], a→ 0,

for any subdomain 4 ⊂ D, where ϕ(a) ≥ 0 is a continuous,
monotone, strictly growing function, ϕ(0) = 0, then

lim
a→0

∑
xm∈D

f(xm)ϕ(a) =
∫

D
f(x)N(x)dx.

Remark:The Lemma holds for f with the set of discontinuities of
Lebesgue’s measure zero.
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Proof of Lemma

Proof. Let D = ∪p4p be a partition of D into a union of small
cubes 4p, having no common interior points. Let |4p| denote the
volume of 4p, δ := maxp diam4p, and y(p) be the center of the
cube 4p. One has

lim
a→0

∑
xm∈D

f(xm)ϕ(a) = lim
a→0

∑
y(p)∈4p

f(y(p))ϕ(a)
∑

xm∈4p

1

= lim
a→0

∑
f(y(p))N(y(p))|4p|[1 + o(1)] =

∫
D
f(x)N(x)dx.

The last equality holds since the preceding sum is a Riemannian
sum for the continuous function f(x)N(x) in the bounded domain
D. Thus, Lemma is proved.
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New equation

u(x) = u0(x)−
∫

D
G(x, y)p(y)u(y)dy, p(x) = 4πh(x)N(x).

L0u := [∇2 + k2 − q0(x)]u = p(x)u(x), Lu = 0.

L = L0 − p(x) := ∇2 + k2 − q(x), q(x) = q0(x) + p(x).

n2(x) = 1− k−2q(x.

k2[n2
0(x)− n2(x)] = p(x).
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Creating new materials

Step 1.
{n2(x), n2

0(x)} ⇒ p(x) = k2(n2
0 − n2).

Step 2.
Given p(x) = p1 + ip2, find {h(x), N(x)}.

Here h(x) = h1(x) + ih2(x), N(x) ≥ 0, h2(x) ≤ 0.
We have p(x) = 4πN(x)h(x). Thus,

h1(x) =
p1(x)

4πN(x)
, h2(x) =

p2(x)
4πN(x)

.

There are many solutions, because N(x) ≥ 0 can be arbitrary.
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Step 3.
Embed

N (∆p) =
1

a2−κ

∫
∆p

N(x)dx

small particles in ∆p, where
⋃

p ∆p = D. We assume that

ζm = h(y(p))
aκ for all xm ∈ ∆p.

The distance between neighboring particles is d = O(a
2−κ

3 ).
Theorem. The resulting new material has the function n2(x)
as its refraction coefficient with the error which tends to 0 as
a→ 0.
Remark. The total volume Vp of the embedded particles in the
limit a→ 0 is zero, provided that κ > −1:

Vp = lim
a→0

O(a3/a2−κ) = lim
a→0

O(a1+κ) = 0.
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Spatial dispersion. Negative refraction

u =
∑

k

a(k)ei[k·r−ω(k)t], |k − k|+ |ω(k)− ω(k)| < δ

vg = ∇k ω(|k|), vp =
ω

|k|
k0.

∇k|k| = k0 :=
k

|k|
;

ω2n2

c2
= k2,

ωn

c
= |k|.

[
n

c
+
ω

c

∂n

∂ω
]∇k ω = k0.

{vg = −const · vp, const > 0} ⇐⇒ negative refraction.

n+ ω
∂n

∂ω
< 0.
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If ω > 0, ω = ω(|k|), then

vp · vg = ω′(|k|) ω
|k|

< 0

provided that
ω′(|k|) < 0.

∇k ω(|k|) = ω′(|k|)k0.

∇k ω(|k|) · vp = ω′(|k|) ω
|k|
.
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Inverse scattering with data at fixed energy and fixed
incident direction

[
∇2 + k2 − q(x)

]
u = 0 in R3, u = eikα·x + v := u0 + v,

v = A(β)
eikr

r
+ o

(
1
r

)
, r = |x| → ∞,

x

r
:= β,

A(β) = − 1
4π

∫
D
e−ikβ·xh(x)dx, h(x) := q(x)u(x, α).

(1)

IP: Given f(β) ∈ L2(S2), α ∈ S2, k > 0, and ε > 0, D ⊂ R3 ( a
bounded domain), find q ∈ L2(D) such that

‖f(β)−A(β)‖L2(S2) < ε. (2)

This problem has infinitely many solutions.
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Claim 1. The set {
∫
D e

−ikβ·xh(x)dx}∀h∈L2(D) is dense in L2(S2)
Corollary 1. Given f ∈ L2(S2) and ε > 0, one can find h ∈ L2(D)
such that

‖f(β) +
1
4π

∫
D
e−ikβ·xh(x)dx‖ < ε.

Claim 2. The set {q(x)u(x, α)}∀q∈L2(D) is dense in L2(D).
Corollary 2. Given h ∈ L2(D) and ε > 0, one can find q ∈ L2(D)
such that

‖h(x)− q(x)u(x, α)‖L2(D) < ε.

Since the scattering amplitude

A(β) = − 1
4π

∫
D
e−ikβ·xh(x)dx

depends continuously on h, IP is solved by Claims 1,2.
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Proof of Claim 1

Assume the contrary. Then ∃ ψ ∈ L2(S2) such that

0 =
∫

S2

dβψ(β)
∫

D
e−ikβ·xh(x)dx ∀h ∈ L2(D).

Thus, ∫
S2

dβψ(β)e−ikβ·x = 0 ∀x ∈ R3.

Therefore,∫ ∞

0
dλλ2

∫
S2

dβe−iλβ·xψ(β)
δ(λ− k)

k2
= 0 ∀x ∈ R3.

By the injectivity of the Fourier transform, one gets

ψ(β)
δ(λ− k)

k2
= 0.

Therefore, ψ(β) = 0. Claim 1 is proved.
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Proof of Claim 2

Given h ∈ L2(D), define

u := u0 −
∫

D
g(x, y)h(y)dy, g :=

eik|x−y|

4π|x− y|
, (3)

q(x) :=
h(x)
u(x)

. (4)

If q ∈ L2(D), then this q solves the problem, and u, defined in (3),
is the scattering solution:

u = u0 −
∫

D
g(x, y)q(y)u(y)dy, (5)

and

A(β) = − 1
4π

∫
D
e−ikβ·yh(y)dy.
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If q is not in L2(D), then the null set
N := {x : x ∈ D, u(x) = 0} is non-void. Let

Nδ := {x : |u(x)| < δ, x ∈ D}, Dδ := D \Nδ.

Claim 3. ∃hδ =
{
h, in Dδ,
0, in Nδ,

such that ‖hδ − h‖L2(D) < cε,

qδ :=
{ hδ

uδ
, in Dδ,

0, in Nδ,
qδ ∈ L∞(D), uδ := u0 −

∫
D ghδdy.

Proof. The set N is, generically, a line
l = {x : u1(x) = 0, u2(x) = 0}, where u1 = <u and u2 = =u.
Consider a tubular neighborhood of this line, ρ(x, l) ≤ δ. Let the
origin O be chosen on l, s3 be the Cartesian coordinate along the
tangent to l, and s1 = u1, s2 = u2 are coordinates in the plane
orthogonal to l, sj-axis is directed along ∇uj |l, j = 1, 2.
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The Jacobian J of the transformation (x1, x2, x3) 7→ (s1, s2, s3) is
nonsingular, |J |+ |J −1| ≤ c, because ∇u1 and ∇u2 are linearly
independent. Define

hδ :=
{
h, in Dδ,
0, in Nδ,

uδ := u0 −
∫
D g(x, y)hδ(y)dy,

qδ :=
{ hδ

uδ
, in Dδ,

0, in Nδ.

One has uδ = u0 −
∫
D ghdy +

∫
D g(x, y)(h− hδ)dy,

|uδ(x)| ≥ |u(x)|−c
∫

Nδ

dy

4π|x− y|
≥ δ−I(δ), x ∈ Dδ, c = max

x∈Nδ

|h(x)|.

If one proves, that I(δ) = o(δ), δ → 0, ∀x ∈ Dδ then
qδ ∈ L∞(D), and Claim 3 is proved.
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Claim 4:
I(δ) = O(δ2| ln(δ)|), δ → 0.

Proof.∫
Nδ

dy

|x− y|
≤

∫
Nδ

dy

|y|
= c1

∫ c2δ

0
ρ

∫ 1

0

ds3√
ρ2 + s23

dρ

= c1

∫ c2δ

0
ρ ln(s3 +

√
ρ2 + s23)|

1
0 ≤ c3

∫ c2δ

0
ρ ln

(
1
ρ

)
dρ

≤ O(δ2| ln(δ)|).
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The condition |∇uj |l ≥ c > 0, j = 1, 2, implies that a tubular
neighborhood of the line l, Nδ = {x :

√
|u1|2 + |u2|2 ≤ δ}, is

included in a region {x : |x| ≤ c2δ} and includes a region
{x : |x| ≤ c′2δ}. This follows from the estimates

c′2ρ ≤ |u(x)| = |∇u(ξ) · (x− ξ)| ≤ c2ρ.

Here ξ ∈ l, x is a point on a plane passing through ξ and
orthogonal to l, ρ = |x− ξ|, and δ > 0 is sufficiently small, so that
the terms of order ρ2 are negligible,
c2 = maxξ∈l |∇u(ξ)|, c′2 = minξ∈l |∇u(ξ)|.
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Calculation of h given f(β) and ε > 0

1. Let {φj} be a basis in L2(D),

hn =
n∑

j=1

c
(n)
j φj ,

ψj(β) := − 1
4π

∫
D
e−ikβ·xφj(x)dx.

Consider the problem:

‖f(β)−
n∑

j=1

c
(n)
j ψj(β)‖ = min . (6)

A necessary condition for (6) is a linear system for c
(n)
j .
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2. Analytical solution:

D = {x : |x| ≤ 1} := B, or B ⊂ D, h = 0 in D \B.

One has:

hlm =

 (−1)l+1 fl,m√
π
2k

g
1,l+1

2
(k)
, l ≤ L,

0, l > L,
(7)

where gµ,ν(k) =
∫ 1
0 x

µ+ 1
2Jν(kx)dx (Bateman-Erdelyi book,

formula (8.5.8))
and L is chosen so that ∑

l>L

|fl,m|2 < ε2.
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Problem formulation

∇× E = iωµH, ∇×H = −iωε′(x)E in R3,

where ω > 0, µ = const, ε′(x) = ε > 0 in D′ = R3 \D, ε′(x) =
ε(x) + iσ(x)

ω ; σ(x) ≥ 0, ε′(x) = ε > 0 in D′ = R3 \D.

∇×∇× E = K2(x)E, H =
∇× E

iωµ
, K2(x) := ω2ε′(x)µ.

E(x) = E0(x) + v, E0(x) = Eeikα·x, k =
ω

c
=

1
√
εµ
,

vr − ikv = o

(
1
r

)
, α · E = 0.
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Basic equations

−4E +∇(∇ ·E)− k2E − p(x)E = 0, p(x) := K2(x)− k2 (8)

∇ · (K2(x)E) = 0 (9)

−4E − k2E − p(x)E −∇(q(x) · E) = 0, q(x) :=
∇K2(x)
K2(x)

.

E = E0 +
∫

D
g(x, y)

(
p(y)E(y) +∇y(q(y) · E(y))

)
dy,

g(x, y) :=
eik|x−y|

4π|x− y|
.

Assume q = 0 on S = ∂D. Then

E = E0 +
∫

D
g(x, y)p(y)E(y)dy +∇x

∫
D
g(x, y)q(y) · E(y)dy.

(10)
A.G. Ramm Electromagnetic Wave scattering by many small bodies



Equivalence result

Lemma Equation (10) is uniquely solvable in H1(D). Its solution
satisfies (8) and (9)
Proof. If E solves (10), then
(−4− k2)E = p(x)E +∇(q(x) · E). Thus,

∇×∇× E −∇(∇ · E)−∇(q(x) · E) = K2(x)E,

or ∇×∇× E −∇
(

K2(x)∇·E+∇K2(x)·E
K2(x)

)
= K2(x)E. Let

1
K2(x)

∇ · (K2(x)E) := ψ(x). Then

−4ψ−K2(x)ψ = 0, K2 = k2in D′, ImK2 ≥ 0, ψr−ikψ = o

(
1
r

)
.

This implies ψ = 0.
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Wave scattering by one small body

Let xm ∈ D, ka� 1, a = 0.5 diam D. Then

E(x) = E0(x) + g(x, xm)

Z
D

p(y)E(y)dy +∇xg(x, xm)

Z
D

q(y) · E(y)dy

+

Z
D

ˆ
g(x, y)− g(x, xm)

˜
p(y)E(y)dy +∇x

Z
D

ˆ
g(x, y)− g(x, xm)

˜
q(y) · E(y)dy

= E0 + Em(x) ≈ E0 + g(x, xm)Vm +∇xg(x, xm)νm.

Vm =
V0m

1− am
+

Am

1− am
νm, νm =

(1− am)ν0m + Bm · V0m

(1− am)(1− bm)−Bm ·Am
,

V0m :=

Z
D

p(x)E0(x)dx, am :=

Z
D

p(x)g(x, xm)dx, Am :=

Z
D

p(x)∇xg(x, xm)dx,

ν0m :=

Z
D

q(x)·E0(x)dx, Bm :=

Z
D

q(x)g(x, xm)dx, bm :=

Z
D

q(x)·∇xg(x, xm)dx.

Error is O
`
ka + a

d

´
.

A.G. Ramm Electromagnetic Wave scattering by many small bodies



Many-body scattering

E(x) = E0(x)+
M∑

m=1

[
g(x, xm)Vm+∇xg(x, xm)νm

]
+O

(
ka+

a

d

)
,

infm |x− xm| ≥ d� a.
Lemma.If f ∈ C(D) and

N (4) =
1

ϕ(a)

∫
4
N(x)dx

[
1 + o(1)

]
, a→ 0,

for any subdomain 4 ⊂ D, where ϕ(a) ≥ 0 is a continuous,
monotone, strictly growing function, ϕ(0) = 0, then

lim
a→0

∑
m

f(xm)ϕ(a) =
∫

D
f(x)N(x)dx.
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Let Dm be a ball, centered at xm, of radius a. Let p(x) = p(r) in
Dm, r = |x− xm|, x ∈ Dm, p(x) = 0 in D \ ∪M

m=1Dm,
p(r) = γm

4πaκ (1− t)2, t = r
a , 0 < κ < 3.

jm :=
∫
Dm

pdy = γm

30 a
3−κ, γm = const we can choose.

Zm :=
∫
Dm

∇p·E
K2+p(y)

dy = 4πκ
3 a3 ln a∇ · E|x=xm [a+ o(a)], a→ 0.

Thus, |Zm| � jm, a→ 0, and, taking φ(a) = a3−κ, one gets

E(x) ∼ E0(x)+φ(a)
∑
m

g(x, xm)
γm

30
Ee(xm), |x−xm| � a, (11)

Ee(xm) = E
(m)
e = E0(xm) +

∑
m′ 6=mEm′(xm).
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The limiting case

E(x) = E0(x) +
∫

D
g(x, y)P(y)E(y)dy, P(y) :=

γ(y)
30

N(y),

(∇2 + k2)E + P(x)E = 0,

[∇2 +K2(x)]E = 0, (12)

K2(x) := k2 + P(x) := k2n2(x), n2(x) := 1 + k−2P(x)
K2(x) = ω2ε̃µ.
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Interpretation

a) ∇×∇E = K2E + iωµJ ,
J := σE = ∇∇·E

iωµ , σ = σij = 1
iωµ

∂2

∂xi∂xj
.

b) D(x) = ε̃E(x) +
∫
D χ(x, y)E(y)dy (non-local susceptability)

∇× E = iωµH,
∇×H = −iωε̃E − iω

∫
D χ(x, y)E(y)dy.

If χ(x, y) := 1
ω2µ

∇xδ(x− y)∇y, then

∇×∇× E = K2(x)E + J , J := ∇∇·E
iωµ .
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Spatial dispersion and negative refraction

vg = ∇Kω(K), vph =
ω

|K|
Ko, |K| = K. (13)

Negative refraction:
vg · vph < 0 (14)

ωn(x, ω) = c|K| (15)

vg(n+ ω
∂n

∂ω
) = cKo. (16)

If n+ ω ∂n
∂ω < 0, then (14) holds. n2 = 1 + k−2P(x, ω).
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