Timing Calibration Efforts in Cosmic Ray Veto for Mu2e Experiment

Payton Beeler

Standard Model

- Charged lepton flavor violation
- Why is it important?
 - Breaks standard model

How it's supposed to work

How it actually works (maybe)

Why is this important? Means that the standard model needs some work.

Mu2e

- Run by Department of Energy
- Located in Batavia, Illinois

Resolution Problems

PROBLEM: it's raining apples

Solution: Cosmic Ray Veto (CRV)

Layout

Counters

- 1,632 on CRV-T
- 4 fibers run through each
- Fibers connect to SiPMs

Noise Problems

Oscilloscope Readout (ideal world)

Oscilloscope Readout (real world)

Timing error ≈ ±300 ps

Method

- Shoot cosmic ray at specific point in counter
- Find theoretical time it takes to get to detector
- Introduce error to theoretical time to simulate measured time
- Try to get original position from simulated time using chi squared test

Method

$$X^{2} = \left[(t_{1} - \frac{z}{v})^{2} + (t_{2} - \frac{z}{v})^{2} + (t_{3} - \frac{L - z}{v})^{2} + (t_{4} - \frac{L - z}{v})^{2} \right] \frac{v}{z}$$

$$\frac{\partial X^2}{\partial z} = 0$$

$$z^{2} = \frac{2L^{2} - 2Lt_{3}v - 2Lt_{4}v + t_{1}^{2}v^{2} + t_{2}^{2}v^{2} + t_{3}^{2}v^{2} + t_{4}^{2}v^{2}}{4}$$

Average Difference vs. Position

RMS vs Position

Next Problem

- Attenuation
- Amplitudes

Scenario

• When a cosmic ray hits the polystyrene 25 photoelectrons come out

Oscilloscope Readout

Difference vs Position

RMS vs Position

Difference vs Position

Acknowledgements

- Big thanks to Glenn Horton-Smith and Tim Bolton for allowing me to work with them this Summer
- Thank you to the NSF for funding