Comparing assessment data between LA and TA supported studios

Bryan Stanley Advisor: J.T. Laverty

Background

Teaching Assistant (TA)

- Graduate Student or upper level undergraduate
- No formal teaching training

Learning Assistant (LA)

- Undergraduate student who had previously taken the course
- Took a pedagogy course

Otero, V., Pollock, S., & Finkelstein, N. "A Physics Department's Role in Preparing Physics Teachers: The Colorado Learning Assistant Model." American Journal of Physics 78, 1218 (2010); https://doi.org/10.1119/1.3471291

Otero, V. "The learning assistant model for teacher education in science and technology." In Forum on Education of the American Physical Society (Vol. 31). (2006). Close, E., et al. "Characterization of time scale for detecting impacts of reforms in an undergraduate physics program." Physics Education Research Conference (2017).

Engineering Physics Courses at Kansas State University

Assessments

Measurements

Force Concept Inventory (FCI)

3 semesters

Post Score

Gain = Post-Pre

The Colorado Learning Attitudes about Science Survey (CLASS)

3 semesters

Brief Electricity and Magnetism Assessment (BEMA)

1 semester

D. Hestenes, M. Wells, and G. Swackhamer, "Force concept inventory." Phys. Teach. 30 (3), 141 (1992).

Adams, Wendy K., et al. "New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey. Physical review special topics-physics education research 2.1 (2006): Phys. Rev. ST Phys. Educ. Res. 2, 010101 Ding, Lin, et al. "Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment." Physical review special Topics-Physics

education research 2.1 (2006): Phys. Rev. ST Phys. Educ. Res. 2, 010105.

Comparing Means

Tukey's HSD

If the difference between two sample means is less than the above value, they are not significantly different. Cohen's d $d = \frac{M_{LA} - M_{TA}}{\sqrt{(s_{LA}^2 + s_{TA}^2)/2}}$

d can be thought of as representing how much two distributions overlap. When d = 0, then both distributions completely overlap.

d	Effect Size	% Overlap
0.2	Small	85.3
0.5	Medium	67.0
0.8	Large	52.6

Cohen, Jacob. "Statistical power analysis for the behavioral sciences. 2nd." (1988).

Becker, Lee A. "Effect Size." (2000). https://www.uccs.edu/lbecker/effect-size#1.%20Standardized%20difference%20between%20two Montgomery, Douglas C. "Design and analysis of experiments. 8th." (2013).

Force Concept Inventory (FCI)

	Students by Semester				FCI Post Score			FCI Gain		
	А	В	С	Total	6. –				0	0
LA	110	63	218	391				4	• 	
TA	199	65	96	360	ω			<u> </u>		
Total	309	128	314	751	0 -					
								- 0	! 	
					t Soor 0.6 0.6			d Gain		
	Post Av	verage	Gain A	verage	۵ ۵	i		0 - O		
LA	60	.71 %	1	2.07 %	0 - 7 -					
TA	61	.15 %	1	3.96 %				- e	•	٥
					0 -				0	0
Τ _α	1	.83 %		1.83 %				- ⁰	0	
ď		0.02		0.14		LA	TA		LA	TA sistant

D. Hestenes, M. Wells, and G. Swackhamer, Force concept inventory, Phys. Teach. 30 (3), 141 (1992).

Force Concept Inventory (FCI)

	Students by Semester						
	А	В	С	Total	FCI Post Score		FCI Gain
GTA	79	0	0	79			0
LA	110	63	218	391	4 -		
UTA	120	65	96	281	°		
Total	309	128	314	751]
					o EC		
	Post Ave	erage	Gain	Average			
GTA	60.0	04 %		12.70 %		0	
LA	60.7	71 %	-	12.07 %	φ-		0
UTA	61.4	46 %		14.31 %	0 - v	0	0
							0
T_{α}	3.3	34 %		3.34 %	GTA LA UTA Assistant	GTA	LA Assistant

D. Hestenes, M. Wells, and G. Swackhamer, Force concept inventory, Phys. Teach. 30 (3), 141 (1992).

0

0

UTA

The Colorado Learning Attitudes about Science Survey Students by Semester (CLASS)

Students by Semester							
A B C Total							
LA	111	52	191	360			
TA	209	62	83	348			
Total	320	114	274	708			

	Post Average	Gain Average
LA	57.59 %	-6.17 %
TA	61.38 %	-2.96 %
T_{α}	2.00 %	2.00 %
d	0.21	0. 22

Adams, Wendy K., et al. "New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey." *Physical review special topics-physics education research* 2.1 (2006): 010101.

The Colorado Learning Attitudes about Science Survey

(CLASS)

Students by Semester						
	А	В	С	Total		
GTA	95	0	0	95		
LA	111	52	191	355		
UTA	114	62	83	253		
Total	320	114	274	708		
	Post Av	erage	Gain A	werage		
GTA	59.	.68 %	-	4.30 %		
LA	57.	.59 %	-	6.17 %		
UTA	62.	.02 %	-	2.47 %		
T_{α}	3.	.41 %		3.42 %		

Adams, Wendy K., et al. "New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey." *Physical review special topics-physics education research* 2.1 (2006): 010101.

Brief Electricity and Magnetism Assessment (BEMA)

	Students	Post-Test	Gain
GTA	100	33.54 %	7.81 %
LA	121	33.17 %	8.02 %
UTA	46	33.00 %	6.31 %
Total	267	33.27 %	7.65 %

Possible reasons for this result:

Prior results could be due to other course transformations.

The LA pedagogy course may not affect **these** assessment results.

Post-assessments were administered at the end of the semester rather than right after Newton's Laws section for the FCI.

We are **not** claiming that TAs and LAs are the same, only that the results are the same for these measures.

Impacts of the LA program on LAs are not accounted for.

This project does not look at how students view LAs and TAs.

Ding, Lin, et al. "Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment." Physical review special Topics-Physics education research 2.1 (2006): Phys. Rev. ST Phys. Educ. Res. 2, 010105.

Acknowledgements

Kansas State Physics REU program

National Science Foundation

Professor J.T. Laverty and KSUPER

