Characterization of a UV prism compressor for UV-IR pumpprobe experiments

Joseph Harrington^{1,3}, Kurtis Borne¹, Farzaneh Ziaee¹, Kanaka Raju Pandiri¹, Ruaridh Forbes², Balram Kaderiya¹, Yubaraj Malakar¹, Travis Severt¹, Itzik Ben-itzhak¹, Artem Rudenko¹, Daniel Rolles¹

¹ J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA ²Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada ³Department of Physics, Fort Hays State University, Hays, Kansas 67601, USA

Motivation

Studying molecular dynamics with short pulses

- **Dissociation of Cyclohexadiene (CHD) by ultrashort UV** (266 nm) laser pulses
- Under single UV-photon absorption, CHD excited to a repulsive ${}^{3}Q_{0}$ potential energy curve
- Resulting channel Hexatriene (HT) has a conical intersection reached in 100 fs or less after excitation [1], so short pulse durations necessary to study these dynamics.
- UV pulse generation and characteristic
- Third-Harmonic-Generation (THG) of a Ti:Sapphire laser (800 nm, 10 kHz, and 25 fs pulses)

THG Dispersion and Compensation

Reducing Dispersion from THG

Dispersive properties of non-linear BBO crystals used for THG

Group delay dispersion (GDD) \rightarrow Higher order expansion of spectral phase.

- \rightarrow Varying propagation speeds of light pulse components due to wavelength dependent refractive index will change pulse duration
- \rightarrow Using thinner crystals length (L_c) reduces GDD

Prism Compressor \rightarrow Introduces angular dispersion to counter positive GDD from the propagation through air, spectrometer entrance window, and BBO crystals [3,4].

 \rightarrow Prism pair gives negative GDD that can be optimized by tuning separation distance l.

-150 -50 0 50 100 -100 -50 Delay (fs) -150 Delay (fs)

GAGAN

EPSCol

Found good overlap with low power UV and mid-range power IR

X-FROG Trace shows a GDD of roughly zero

Office of Science

and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, Grant No. DE-FG02-86ER1349. This work was partially supported by the National Science Foundation EPSCoR Track II Award No. IIA-1430493. KRP thanks NSF-EPSCOR Track II project for their support. Also special thanks to the REU Grant No.

JRML personnel was supported by the Chemical Sciences, Geosciences,

PHY-1461251 for helping fund the research.

National Science Foundation WHERE DISCOVERIES BEGIN

Partners in Science & Technology

[1] Bucksbaum and Petrovic *Faraday Discuss.*, **163**, 475–484 (2013) [2]R. Trebino et. al., Review of Scientific Instruments 68(9), 32777 (1997) [3] J. Diels and W. Rudolf, *Ultrashort Laser Pulse Phenomena, Second* Edition (Massachusetts, Academic Press, 2006).

[4] R. Fork, O. Martinez, and J. Gordon, Optics Letters **9**, 150 (1984)