Electron Expulsion of Plasmonic Nanoparticles

Cooper Agar, Erfan Saydanzad, Jason Li, Uwe Thumm

Background

- Model gold nanospheroids
 - Hit them with an IR pulse inducing plasmonic field
 - Enhances field
 - This is calculable
 - Hit them with an XUV pulse to excite electron
 - \circ ~ Known as streaking vary τ

Calculate Electron Trajectory

1. Excitation

- a. Initial energy from XUV
- 2. Transport to the surface
 - a. Analytic
 - b. Could change direction through collisions
- 3. Escape from the surface
 - a. Overcome potential barrier $V_0 = \varepsilon_F + W$
- 4. Propagation to detector
 - a. In E-field, this is numeric

Sampling Trajectories

- Use Monte Carlo
 - Normalized to maximum yield
 - ~4,400 trajectories per time delay
- Have an initial probability density function (PDF)
 - $\circ \quad \rho(\textbf{r_0},\textbf{v_0}) = \rho_{\text{pos}}(\textbf{r_0})\rho_{\text{vel}}(\textbf{v_0})$

Surface and Transport Effects

- Surface Effect
 - Initial radial velocity determines escape
- Transport Effect
 - Greater interior distance means more collisions

They combine to make escape at the poles much more likely.

x (nm)

Streaked Spectra with E_{inc} at $\pi/3$ rad.

-150

-150 -100 -50 0 50 100 150 x [nm] Streaked Spectra with E_{inc} at $\pi/3$ rad.

-150 -100 -50 0 50 100 150 x [nm]

Streaked Spectra with E_{inc} at $\pi/3$ rad.

-150 -100 -50 0 50 100 150 x [nm]

Streaked Spectra with $\mathsf{E}_{_{inc}}$ at $\pi/3$ rad.

-150 -100 -50 0 50 100 150 x [nm]

Streaked Spectra with $a_z = 15 \text{ nm}$

-100 -150

> -150 -100 -50 0 x [nm]

50 100 150

Streaked Spectra with $a_z = 15 \text{ nm}$

x (nm)

Conclusions

- Streaked spectra of nanoparticles are shape dependent
- Streaked spectra depend on the incident angle of the IR pulse
- In future:
 - Investigate variance
 - Vary incident angle of XUV pulse
 - Rotate both pulses